Skip to main content
Log in

High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A high-accuracy time discretization is discussed to numerically solve the nonlinear fractional diffusion equation forced by a space-time white noise. The main purpose of this paper is to improve the temporal convergence rate by modifying the semi-implicit Euler scheme. The solution of the equation is only Hölder continuous in time, which is disadvantageous to improve the temporal convergence rate. Firstly, the system is transformed into an equivalent form having better regularity than the original one in time. But the regularity of nonlinear term remains unchanged. Then, combining Lagrange mean value theorem and independent increments of Brownian motion leads to a higher accuracy discretization of nonlinear term which ensures the implementation of the proposed time discretization scheme without loss of convergence rate. Our scheme can improve the convergence rate from \({\min \{\frac{\gamma }{2\alpha },\frac{1}{2}\}}\) to \({\min \{\frac{\gamma }{\alpha },1\}}\) in the sense of mean-squared \(L^2\)-norm. The theoretical error estimates are confirmed by extensive numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blömker, D., Kamrani, M.: Numerically computable a posteriori-bounds for the stochastic Allen-Cahn equation. Bit. Numer. Math. 59, 647–673 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bou-Rabee, N.: SPECTRWM: spectral random walk method for the numerical solution of stochastic partial differential equations. SIAM Rev. 60(2), 386–406 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bréhier, C.E.: Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise. Potential Anal. 40, 1–40 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, C.C., Hong, J.L., Ji, L.: Mean-square convergence of a semidiscrete sheme for stochastic maxwell equations. SIAM J. Numer. Anal. 57(2), 728–750 (2019)

    Article  MathSciNet  Google Scholar 

  5. Cui, J.B., Hong, J.L., Liu, Z.H., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266(9), 5625–5663 (2019)

    Article  Google Scholar 

  6. Deng, W.H., Hou, R., Wang, W.L., Xu, P.B.: Modeling Anomalous Diffusion: From Statistics and Mathematics. World Scientific, Singapore (2020)

    Book  Google Scholar 

  7. Dybiec, B., Kleczkowski, A., Gilligan, C.A.: Modelling control of epidemics spreading by long-range interactions. J. R. Soc. Interface. 6(39), 941–950 (2009)

    Article  Google Scholar 

  8. Choi, J.H., Han, B.S.: A regularity theory for stochastic partial differential equations with a super-linear diffusion coefficient and a spatially homogeneous colored noise. Stochastic Process Appl. 135, 1–30 (2021)

    Article  MathSciNet  Google Scholar 

  9. Chow, P.: Stochastic Partial Differential Equations. Chapman & Hall/CRC, New York (2007)

    Book  Google Scholar 

  10. Gunzburger, M., Li, B.Y., Wang, J.L.: Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. 88(318), 1715–1741 (2019)

    Article  MathSciNet  Google Scholar 

  11. Hong, J.L., Wang, X., Zhang, L.Y.: Parareal exponential \(\theta \)-scheme for longtime simulation of stochastic Schrödinger equations with weak damping. SIAM J. Sci. Comput. 41(6), B1155–B1177 (2019)

    Article  Google Scholar 

  12. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Stochastic heat equation with rough dependence in space. Ann. Probab. 45(6B), 4561–4616 (2017)

    Article  MathSciNet  Google Scholar 

  13. Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151(2), 531–545 (1997)

    Article  MathSciNet  Google Scholar 

  14. Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Comm Math Phys. 88, 309–318 (1983)

    Article  MathSciNet  Google Scholar 

  15. Liu, X., Deng, W.H.: Numerical approximation for fractional diffusion equation forced by a tempered fractional Gaussian noise. J. Sci. Comput. 84(1), 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Deng, W.H.: Higher order approximation for stochastic space fractional wave equation forced by an additive space-time Gaussian noise. J. Sci. Comput. 87(1), 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z.H., Qiao, Z.H.: Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Numer. Anal. 40(2), 1074–1093 (2020)

    Article  MathSciNet  Google Scholar 

  18. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  19. van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Stochastic integration in UMD Banach spaces. Ann. Probab. 35(4), 1438–1478 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput Math. 15, 733–791 (2015)

    Article  MathSciNet  Google Scholar 

  21. Prato, G.D., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  22. Song, R., Vondrac̆ek, Z,: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

  23. Song, J., Song, X., Zhang, Q.: Nonlinear Feynman-Kac formulas for stochastic partial differential equations with space-time noise. SIAM J. Math. Anal. 51(2), 955–990 (2019)

    Article  MathSciNet  Google Scholar 

  24. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, New York (2008)

    MATH  Google Scholar 

  25. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully thank the anonymous referees for valuable comments and suggestions in improving this paper. This work was supported by the Foundation of Hubei Provincial Department of Education (No. B2021255).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X. High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation. J Sci Comput 90, 19 (2022). https://doi.org/10.1007/s10915-021-01710-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01710-w

Keywords

MSC Classification

Navigation