Skip to main content
Log in

Error Analysis of a Decoupled Finite Element Method for Quad-Curl Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Finite element approximation to a decoupled formulation for the quad-curl problem is studied in this paper. The difficulty of constructing elements with certain conformity to the quad–curl problems has been greatly reduced. For convex domains, where the regularity assumption holds for Stokes equation, the approximation to the curl of the true solution has quadratic order of convergence and first order for the energy norm. If the solution shows singularity, an a posterior error estimator is developed and a separate marking adaptive finite element procedure is proposed, together with its convergence proved. Both the a priori and a posteriori error analysis are supported by the numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold, D.N.: Finite element exterior calculus, volume 93 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018)

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Hu, K.: Complexes from complexes. Found. Comput. Math. 1–36,(2021)

  4. Beck, R., Hiptmair, R., Hoppe, R.W., Wohlmuth, B.: Residual based a posteriori error estimators for Eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182 (2000)

  5. Biskamp, D.: Magnetic reconnection in plasmas. Astrophys. Space Sci. 242(1–2), 165–207 (1996)

    Article  MATH  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comp. 65(215), 897–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Brenner, S.C., Sun, J., Sung, L.-Y.: Hodge decomposition methods for a quad-curl problem on planar domains. J. Sci. Comput. 73(2), 495–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Cao, S.: A recovery-based a posteriori error estimator for H(curl) interface problems. Comput. Methods Appl. Mech. Eng. 296, 169–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cakoni, F., Haddar, H.: A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl. Imag. 1(3), 443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chacón, L., Simakov, A.N., Zocco, A.: Steady-state properties of driven magnetic reconnection in 2d electron magnetohydrodynamics. Phys. Rev. Lett. 99(23), 235001 (2007)

    Article  Google Scholar 

  14. Chen, L.: iFEM: an integrated finite element methods package in MATLAB. University of California at Irvine (2009)

  15. Chen, L., Huang, X.: Decoupling of mixed methods based on generalized Helmholtz decompositions. SIAM J. Numer. Anal. 56(5), 2796–2825 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, L., Wu, Y.: Convergence of adaptive mixed finite element methods for the Hodge Laplacian equation: without harmonic forms. SIAM J. Numer. Anal. 55(6), 2905–2929 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, L., Wu, Y., Zhong, L., Zhou, J.: Multigrid preconditioners for mixed finite element methods of the vector Laplacian. J. Sci. Comput. 77(1), 101–128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cochez-Dhondt, S., Nicaise, S.: Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Engrg. 196, 2583–2595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R–3), 33–75 (1973)

  21. Dari, E., Durán, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64(211), 1017–1033 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dari, E., Duran, R., Padra, C., Vampa, V.: A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30(4), 385–400 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Demlow, A., Hirani, A.N.: A posteriori error estimates for finite element exterior calculus: the de Rham complex. Found. Comput. Math. 14(6), 1337–1371 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  25. Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous galerkin method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, J., Xu, J.: Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem. J. Sci. Comput. 55(1), 125–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, K., Zhang, Q., Zhang, Z.: A family of finite element Stokes complexes in three dimensions (2020). arXiv preprint arXiv:2008.03793

  28. Hu, K., Zhang, Q., Zhang, Z.: Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42(6), A3859–A3877 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, J., Huang, X.: Local and parallel algorithms for fourth order problems discretized by the Morley–Wang–Xu element method. Numer. Math. 119(4), 667–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, X.: Nonconforming finite element Stokes complexes in three dimensions (2020). arXiv preprint arXiv:2007.14068

  31. Kikuchi, F.: Mixed formulations for finite element analysis of magnetostatic and electrostatic problems. Japan J. Appl. Math. 6(2), 209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kikuchi, F.: On a discrete compactness property for the nédélec finite elements. Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A 36(3), 479–490 (1989)

  33. Kingsep, A., Chukbar, K., Yankov, V.: Electron magnetohydrodynamics. Rev. Plasma Phys. 16,(1990)

  34. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains, Mathematical surveys and monographs. American Mathematical Society (2010)

  35. Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

  36. Monk, P., Sun, J.: Finite element methods for maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B264 (2012)

  37. Nédélec, J.-C.: Mixed finite elements in \( {R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nédélec, J.-C.: A new family of mixed finite elements in \( {R}^3\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Neilan, M.: Discrete and conforming smooth de rham complexes in three dimensions. Math. Comp. 84(295), 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nicaise, S.: Singularities of the quad curl problem. J. Differ. Equ. 264(8), 5025–5069 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., vol. 606, pp. 292–315. Springer, Berlin (1977)

  42. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comp. 77(262), 633–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simakov, A.N., Chacon, L.: Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics. Phys. Plasmas 16(5), 055701 (2009)

    Article  Google Scholar 

  45. Sun, J.: A mixed fem for the quad-curl eigenvalue problem. Numer. Math. 132(1), 185–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, J., Zhang, Q., Zhang, Z.: A curl-conforming weak galerkin method for the quad-curl problem. BIT Numer. Math. 59(4), 1093–1114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sweet, P.A.: The Neutral Point Theory of Solar Flares. In: Lehnert, B. (ed) Electromagnetic Phenomena in Cosmical Physics, vol. 6, p. 123 (1958)

  48. Verfürth, R.: A posteriori error estimators for the stokes equations ii non-conforming discretizations. Numer. Math. 60(1), 235–249 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, C., Sun, Z., Cui, J.: A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349, 23–38 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Wang, L., Zhang, Q., Sun, J., Zhang, Z.: A priori and a posteriori error estimates for the quad-curl eigenvalue problem (2020). arXiv preprint arXiv:2007.01330

  51. Zhang, Q., Wang, L., Zhang, Z.: H (\(\text{ curl } ^2\))-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41(3), A1527–A1547 (2019)

    Article  MATH  Google Scholar 

  52. Zhang, Q., Zhang, Z.: Curl-curl conforming elements on tetrahedra (2020). arXiv preprint arXiv:2007.10421

  53. Zhang, S.: Mixed schemes for quad-curl equations. ESAIM Math. Model. Numer. Anal. 52(1), 147–161 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao, J., Zhang, B.: The curl-curl conforming virtual element method for the quad-curl problem. Math. Models Methods Appl. Sci. 31(8), 1659–1690 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \({\mathbb{R}}^{3}\). Math. Comp. 80(276), 1871–1886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, W., Chen, Z., Wang, L.: An adaptive finite element method for the h-\(\psi \) formulation of time-dependent eddy current problems. Numer. Math. 103(4), 667–689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comp. 81(278), 623–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhong, L., Shu, S., Chen, L., Xu, J.: Convergence of adaptive edge finite element methods for \({H}(\mathbf{curl})\)-elliptic problems. Numer. Linear Algebra Appl. 17(2–3), 415–432 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for nedelec edge elements for time-harmonic maxwell’s equations. J. Comput. Math. 563–572,(2009)

Download references

Acknowledgements

We greatly appreciate the anonymous reviewers’ revising suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported in part by the National Science Foundation under grant DMS-1913080. The second author was supported in part by the National Science Foundation under grants DMS-1913080 and DMS-2012465. The third author was supported by the National Natural Science Foundation of China under grants 11771338 and 12171300, the Natural Science Foundation of Shanghai 21ZR1480500, and the Fundamental Research Funds for the Central Universities 2019110066.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Chen, L. & Huang, X. Error Analysis of a Decoupled Finite Element Method for Quad-Curl Problems. J Sci Comput 90, 29 (2022). https://doi.org/10.1007/s10915-021-01705-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01705-7

Keywords

Mathematics Subject Classification

Navigation