Skip to main content
Log in

On a Reconstruction of a Solely Time-Dependent Source in a Time-Fractional Diffusion Equation with Non-smooth Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An inverse source problem for a non-automonous time fractional diffusion equation of order \((0<\beta <1)\) is considered in a bounded Lipschitz domain in \(\mathbb {R}^d\). The missing solely time-dependent source is recovered from an additional integral measurement. The existence, uniqueness and regularity of a weak solution is studied. We design two numerical algorithms based on Rothe’s method over uniform and graded grids, derive a priori estimates and prove convergence of iterates towards the exact solution. An essential feature of the fractional subdiffusion problem is that the solution lacks the smoothness near the initial time, although it would be smooth away from \(t = 0\). Rothe’s method on a uniform grid addresses the existence of a such a solution (non-smooth with \(t^\gamma \) term where \(1>\gamma > \beta \)) under low regularity assumptions, whilst Rothe’s method over graded grids has the advantage to cope better with the behaviour at \(t=0\) (also here \(t^\beta \) is included in the class of admissible solutions) for the considered problems. The theoretical obtained results are supported by numerical experiments and stay valid in case of smooth solutions to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability Statement

The authors used the open-source computing platform FEniCS for computations.

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  2. Bainov, D., Simeonov, P.: Integral inequalities and applications. In: Mathematics and Its Applications. East European Series. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  3. Brunner, H.: The numerical solution of weakly singular volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2d fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Cannon, J.R., Esteva, S.P., Van Der Hoek, J.: A galerkin procedure for the diffusion equation subject to the specification of mass. SIAM J. Numer. Anal. 24(3), 499–515 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Ismailov, M.I., Çiçek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40(7), 4891–4899 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Jiang, D., Liu, Y., Wang, D.: Numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation. Adv. Comput. Math. 46(3), 43 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Jin, B., Rundell, W.: A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 31(3), 035003 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Kačur, J.: Method of rothe in evolution equations. In: Equadiff, pp. 23–34. Springer, New York (1986)

    Google Scholar 

  12. Karimi, M., Moradlou, F., Hajipour, M.: On regularization and error estimates for the backward heat conduction problem with time-dependent thermal diffusivity factor. Commun. Nonlinear Sci. Numer. Simul. 63, 21–37 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Karimi, M., Moradlou, F., Hajipour, M.: Regularization technique for an inverse space-fractional backward heat conduction problem. J. Sci. Comput. 83(2), 37 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Karimi, M., Moradlou, F., Hajipour, M.: On the ill-posed analytic continuation problem: an order optimal regularization scheme. Appl. Numer. Math. 161, 311–332 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Karimi, M., Zallani, F., Sayevand, K.: Wavelet regularization strategy for the fractional inverse diffusion problem. Numer Algorithms (2020)

  16. Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16(1), 3–11 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Kirane, M., Malik, S.A., Al-Gwaiz, M.A.: An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods Appl. Sci. 36(9), 1056–1069 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Kopteva, N.: Error analysis of the \(L1\) method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Kubica, A., Yamamoto, M.: Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 21(2), 276–311 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Kufner, A., John, O., Fučík, S.: Function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1977)

    Google Scholar 

  21. Li, Y.S., Sun, L.L., Zhang, Z.Q., Wei, T.: Identification of the time-dependent source term in a multi-term time-fractional diffusion equation. Numer, Algorithms 82(4), 1279–1301 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Liao, Hl., Li, D., Zhang, J.: Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg (2012)

    MATH  Google Scholar 

  25. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 28 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Logg, A., Wells, G.N., Hake, J.: DOLFIN: a C++/Python Finite Element Library, chap. 10. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  27. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15(1), 141–160 (2012)

    MathSciNet  MATH  Google Scholar 

  28. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52(2), 123–138 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Mustapha, K.: An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31(2), 719–739 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithms 61(4), 525–543 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Mustapha, K., McLean, W.: Superconvergence of a discontinuous galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Nohel, J.A., Shea, D.F.: Frequency domain methods for Volterra equations. Adv. Math. 22(3), 278–304 (1976)

    MathSciNet  MATH  Google Scholar 

  34. Rektorys, K.: The method of discretization in time and partial differential equations. Equadiff 5, 293–296 (1982)

    MATH  Google Scholar 

  35. Roussy, G., Bennani, A., Thiebaut, J.M.: Temperature runaway of microwave irradiated materials. J. Appl. Phys. 62(4), 1167–1170 (1987)

    Google Scholar 

  36. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Sakamoto, K., Yamamoto, M.: Inverse source problem with a final overdetermination for a fractional diffusion equation. Math. Control Relat. Fields 1(4), 509–518 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Slodička, M., Šišková, K.: An inverse source problem in a semilinear time-fractional diffusion equation. Comput. Math. Appl. 72(6), 1655–1669 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Slodička, M.: Numerical solution of a parabolic equation with a weakly singular positive-type memory term. Electron. J. Differ. Equ. 1997, paper 9, 12 (1997)

  40. Slodička, M., Šišková, K., Van Bockstal, K.: Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 91, 15–21 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Srivastava, H.M., Daoust, M.C.: A note on the convergence of Kampé de Fériet’s double hypergeometrics series. Math. Nachr. 53, 151–159 (1972). https://doi.org/10.1002/mana.19720530114

    Article  MathSciNet  MATH  Google Scholar 

  42. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Sun, Zz., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Van Bockstal, K.: Existence and uniqueness of a weak solution to a non-autonomous time-fractional diffusion equation (of distributed order). Appl. Math. Lett. 109, 106540 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Van Bockstal, K.: Existence of a unique weak solution to a nonlinear non-autonomous time-fractional wave equation (of distributed-order). Mathematics 8(8), 1283 (2020)

    Google Scholar 

  46. Vladimirov, V.S.: Equations of mathematical physics. (Uravneniya matematicheskoj fiziki.) 2. überarb. und erg. Auflage. Moskau: Verlag ”Nauka”, Hauptredaktion für physikalisch-mathematische Literatur. 512 S. R. 1.05 (1971). (1971)

  47. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia (1990)

    MATH  Google Scholar 

  48. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Wei, T., Wang, J.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Wei, T., Zhang, Z.: Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng. Anal. Boundary Elem. 37(1), 23–31 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Yang, F., Liu, X., Li, X.X.: Landweber iterative regularization method for identifying the unknown source of the modified Helmholtz equation. Boundary Value Probl. 2017(1), 91 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT 57(3), 685–707 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Zaky, M.A., Hendy, A.S., Macías-Díaz, J.E.: Semi-implicit galerkin-legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions. J. Sci. Comput. 82(1), 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, M., Liu, J.: Identification of a time-dependent source term in a distributed-order time-fractional equation from a nonlocal integral observation. Comput. Math. Appl. 78(10), 3375–3389 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the handling editor and the anonymous referees for their constructive feedback and helpful suggestions, which highly improved the paper. The authors would also like to thank Professor Vladimir G. Pimenov of Ural Federal University and Professor Marián Slodička of Ghent University, for their generosity and guidance, which has always been so valuable to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Van Bockstal.

Ethics declarations

Funding

A. S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075. K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N).

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendy, A.S., Van Bockstal, K. On a Reconstruction of a Solely Time-Dependent Source in a Time-Fractional Diffusion Equation with Non-smooth Solutions. J Sci Comput 90, 41 (2022). https://doi.org/10.1007/s10915-021-01704-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01704-8

Keywords

Mathematics Subject Classification

Navigation