Skip to main content

Collective Motion Planning for a Group of Robots Using Intermittent Diffusion

Abstract

In this work we establish a simple yet effective strategy, based on intermittent diffusion, for enabling a group of robots to accomplish complex tasks, shape formation and assembly. We demonstrate the feasibility of this approach and rigorously prove collision avoidance and convergence properties of the proposed algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability Statement

The datasets generated during and/or analysed during the current study areavailable from the corresponding author on reasonable request.

References

  1. Agmon, Noa, Fok, Chien Liang, Emaliah, Yehuda, Stone, Peter, Julien, Christine, Vishwanath, Sriram: On coordination in practical multi-robot patrol. Proceedings - IEEE International Conference on Robotics and Automation, pages 650–656, (2012)

  2. Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipulation planning. In Proceedings of IEEE International Conference on Robotics and Automation, voL.1, pp 113–120 , April (1996)

  3. Ambrosio, Luigi, Gigli, Nicola: A user’s guide to optimal transport. In Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics, page 1-155. Springer Berlin Heidelberg, (2013)

  4. Anderson, Brendon G., Loeser, Eva, Gee, Marissa, Ren, Fei, Biswas, Swagata, Turanova, Olga, Haberland, Matt, Bertozzi, Andrea L.: Quantitative assessment of robotic swarm coverage. In Proceeding 15th International Conferences on Informatics in Control, Automation, and Robotics, pp 91–101, (2018)

  5. Bandyopadhyay, Saptarshi, Chung, Soon-Jo, Hadaegh, Fred Y.: Probabilistic swarm guidance using optimal transport. 2014 IEEE Conference on Control Applications (CCA), pp 498–505, (2014)

  6. Bertozzi, Andrea L., Kemp, Mathieu, Marthaler, Daniel: Determining environmental boundaries: asynchronous communication and physical scales. In Cooperative Control, pp 25–42. Springer, Berlin, Heidelberg, nov (2004)

  7. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1, (1997)

  8. Chanclou, B., Luciani, A.: Global and local path planning in natural environment by physical modeling. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 96, vol.3, pp 1118–1125. IEEE, (19966)

  9. Chow, Shui-Nee., Yang, Tzi-Sheng., Zhou, Haomin: Global optimizations by intermittent diffusion, pp. 466–479. Chaos, CNN, Memristors and Beyond (2013)

    Google Scholar 

  10. Chung, S., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Rob. 34, 837–855 (2018)

    Article  Google Scholar 

  11. De Badyn, Mathias Hudoba, Eren, Utku, Acikmese, Behcet, Mesbahi, Mehran: Optimal mass transport and kernel density estimation for state-dependent networked dynamic systems. In Proceedings of the IEEE Conference on Decision and Control, (2019)

  12. Delon, Julie: Optimal transport and wasserstein barycenters in computer vision, image and video processing. Optimal transport and vision-Teaser, (2013)

  13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    MathSciNet  Article  Google Scholar 

  14. Egerstedt, Magnus: Swarming robots. Snapshot Mod. Math. 1(1), 1–9 (2016)

    Google Scholar 

  15. Elamvazhuthi, Karthik, Kuiper, Hendrik, Kawski, Matthias, Berman, Spring: Bilinear controllability of a class of advection-diffusion-reaction systems. IEEE Transactions on Automatic Control, (2019)

  16. Eren, Utku, Behçet Açışe. Velocity field generation for density control of swarms using heat equation and smoothing kernels. IFAC-PapersOnLine, (2017)

  17. Feng, Zexin, Froese, Brittany, Liang, Rongguang: Freeform illumination optics construction following an optimal transport map. Appl. Opt. 55(16), 4301 (2016)

    Article  Google Scholar 

  18. Ferguson, Dave, Likhachev, Maxim, Stentz, Anthony: A guide to heuristic based path planning. In: Proceedings of the Workshop on Planning under Uncertainty for Autonomous Systems at The International Conference on Automated Planning and Scheduling (ICAPS), (2005)

  19. Ferrari, Silvia, Foderaro, Greg, Zhu, Pingping, Wettergren, Thomas A.: Distributed optimal control of multiscale dynamical systems: a tutorial. IEEE Control. Syst. 36(2), 102–116 (2016)

    MathSciNet  Article  Google Scholar 

  20. Fiorini, Paolo, Shiller, Zvi: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  21. Galichon, Alfred: A survey of some recent applications of optimal transport methods to econometrics. Econom. J. 20(2), C1–C11 (2017)

    MathSciNet  Article  Google Scholar 

  22. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method. Auton. Robot. 13(3), 207–222 (2002)

    Article  Google Scholar 

  23. Gerkey, Brian P., Mataric, Maja J.: Are (explicit) multi-robot coordination and multi-agent coordination really so different ? Proceedings of the AAAI Spring Symposium on Bridging the Multi-Agent and Multi-Robotic Research Gap, pp 1–3, (2004)

  24. Hart, Peter, Nilsson, Nils, Raphael, Bertram: A formal basis for the heuristic determination of minimum cost paths. IEEE Transac Syst Sci Cybernet 4(2), 100–107 (1968)

    Article  Google Scholar 

  25. Hoy, Michael, Matveev, Alexey S., Savkin, Andrey V.: Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey. Robotica 33(3), 463–497 (2015)

    Article  Google Scholar 

  26. Hsieh, M. Ani, Kumar, Vijay, Chaimowicz, Luiz.: Decentralized controllers for shape generation with robotic swarms. Robotica, (2008)

  27. Jäger, Markus, Nebel, Bernhard: Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots. IEEE International Conference on Intelligent Robots and Systems 3, 1213–1219 (2001)

  28. Jordan, Richard, Kinderlehrer, David, Otto, Felix: The variational formulation of the Fokker-Planck equation. SIAM journal on mathematical analysis, (1998)

  29. Kalra, Nidhi, Zlot, Robert, Bernardine Dias, M., Stentz, Anthony: Market-based multirobot coordination: a comprehensive survey and analysis. Robotics Institute Carnegie Mellon University Tech Rep CMURITR0516, 94(April):48, (2006)

  30. Kaminka, Gal A., Erusalimchik, Dan, Kraus, Sarit: Adaptive multi-robot coordination: a game-theoretic perspective. Proceedings - IEEE International Conference on Robotics and Automation, pp 328–334, (2010)

  31. Kantorovich, L.V.: On the translocation of masses. Manage. Sci. 133(4), 1381–1382 (2006)

    MATH  Google Scholar 

  32. Karaman, Sertac, Frazzoli, Emilio: Sampling-based algorithms for optimal motion planning. J. Rob. Res. 30, 846–894 (2011)

    Article  Google Scholar 

  33. Kavraki, L., Latombe, J.: Randomized preprocessing of configuration for fast path planning. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pages 2138–2145 vol.3, May (1994)

  34. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90 (1986)

    Article  Google Scholar 

  35. Koenig, Sven, Likhachev, Maxim: D* Lite. AAAI Conference of Artificial Intelligence, (2002)

  36. Koenig, Sven, Likhachev, Maxim: Fast replanning for navigation in unknown terrain. IEEE Trans. Rob. 21(3), 354–363 (2005)

    Article  Google Scholar 

  37. Koenig, Sven, Likhachev, Maxim, Furcy, David: Lifelong Planning A*. Artif. Intell. 155(1–2), 93–146 (2004)

    MathSciNet  Article  Google Scholar 

  38. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. Proceedings of the IEEE Conference on Robotics and Automation, pp 1398–1404, (1991)

  39. Krishnan, V., Martínez, S.: Distributed optimal transport for the deployment of swarms. In 2018 IEEE Conference on Decision and Control (CDC), pages 4583–4588, (2018)

  40. Latombe, Jean-Claude.: Robot motion planning. Kluwer Academic Publishers, (1990)

  41. LaValle, Steven M., Kuffner, James J.: Rapidly-exploring random trees: progress and prospects. 4th Workshop on Algorithmic and Computational Robotics: New Directions, pp 293–308, (2000)

  42. Lee, Sung G., Diaz-Mercado, Yancy, Egerstedt, Magnus: Multirobot control using time-varying density functions. IEEE Trans. Rob. 31(2), 489–493 (2015)

    Article  Google Scholar 

  43. Li, Hanjun, Feng, Chunhan, Ehrhard, Henry, Shen, Yijun, Cobos, Bernardo, Zhang, Fangbo, Elamvazhuthi, Karthik, Berman, Spring, Haberland, Matt, Bertozzi, Andrea L.: Decentralized stochastic control of robotic swarm density: Theory, simulation, and experiment. In IEEE International Conference on Intelligent Robots and Systems, volume September, pp 4341–4347, (2017)

  44. Li, Wuchen, Lu, Jun, Zhou, Haomin, Chow, Shui Nee: Method of evolving junctions: a new approach to optimal control with constraints. Automatica 78, 72–78 (2017)

    MathSciNet  Article  Google Scholar 

  45. Likhachev, Maxim, Ferguson, Dave, Gordon, Geoff, Stentz, Anthony, Thrun, Sebastian: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)

    MathSciNet  Article  Google Scholar 

  46. Lu, Jun.: Method of evolving junctions: a new approach to path planning and optimal control. PhD thesis, Georgia Institute of Technology, (2014)

  47. Lu, Jun, Diaz-Mercado, Yancy, Egerstedt, Magnus, Zhou, Haomin, Chow, Shui Nee: Shortest paths through 3-dimensional cluttered environments. In Proceedings - IEEE International Conference on Robotics and Automation, pp 6579–6585. IEEE, may (2014)

  48. Luna, Ryan, Bekris, Kostas E.: Efficient and complete centralized multi-robot path planning. In IEEE International Conference on Intelligent Robots and Systems, pp 3268–3275, (2011)

  49. Marcolino, Leandro Soriano, Chaimowicz, Luiz: Traffic control for a swarm of robots: Avoiding group conflicts. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1949–1954. IEEE, (2009)

  50. Mérigot, Quentin: A multiscale approach to optimal transport. Comput. Gr. Forum 30(5), 1583–1592 (2011)

    Article  Google Scholar 

  51. Cheol Lee, Min, Gyu Park, Min: Artificial potential field based path planning for mobile robots using a virtual obstacle concept. Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2(Aim):735–740, (2003)

  52. Lavalle, Steven M., Lavalle, Steven M., Lavalle, Steven M.: Rapidly-exploring random trees: a new tool for path planning. 98-11 (1998)

  53. Nesterov, Yurii.: Introductory lectures on convex optimization, vol.87. Springer, (2004)

  54. Ogren, P., Egerstedt, M., Hu, X.: A control lyapunov function approach to multi-agent coordination. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol.2, pp 1150–1155, (2001)

  55. Overmars, Mark H.: A random approach to motion planning, vol.92. Unknown Publisher, (1992)

  56. Svestka. P.: Robot motion planning using probabilistic roadmaps. PhD thesis, Universiteit Utrecht, (1997)

  57. Park, Chonhyon, Pan, Jia, Manocha, Dinesh: Real-time optimization-based planning in dynamic environments using GPUs. In Proceedings - IEEE International Conference on Robotics and Automation, pp 4090–4097. IEEE, may (2013)

  58. Park, Min Gyu, Jeon, Jae Hyun, Lee, Min Cheol: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, 2001., 3:1530–1535, (2001)

  59. Park, Min Gyu, Jeon, Jae Hyun, Lee, Min Cheol: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, 2001., pages 1530–1535, (2001)

  60. Parker, L.E.: A distributed and optimal motion planning approach for multiple mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 3(May):2612–2619, (2002)

  61. Rekleitis, I., Lee-Shue, V., Ai Peng New Ai Peng New, Choset, H.: Limited communication, multi-robot team based coverage. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, 4(Apri):3462–3468, (2004)

  62. Rimon, Elon, Koditschek, Daniel E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  63. Rossi, Federico, Bandyopadhyay, Saptarshi, Wolf, Michael, Pavone, Marco: Review of multi-agent algorithms for collective behavior: a structural taxonomy. IFAC-PapersOnLine 51, 112–117 (2018)

    Article  Google Scholar 

  64. Santos, M., Diaz-Mercado, Y., Egerstedt, M.: Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robot. Autom Lett. 3(2), 919–925 (2018)

    Article  Google Scholar 

  65. Stentz, Anthony: The focussed d* algorithm for real-time replanning. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Vol. 2, IJCAI’95, pp 1652–1659, San Francisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc

  66. Villani, Cedric: Optimal transport, old and new, 338th edn. Springer-Verlag, Berlin Heidelberg (2008)

    MATH  Google Scholar 

  67. Warren, C.W.: Global path planning using artificial potential fields. In Proceedings, 1989 International Conference on Robotics and Automation, pages 316–321. IEEE Comput. Soc. Press, (1989)

  68. Warren, C.W.: Multiple robot path coordination using artificial potential fields. In Proceedings., IEEE International Conference on Robotics and Automation, pp 500–505. IEEE Comput. Soc. Press, (1990)

  69. Yan, Zhi, Jouandeau, Nicolas, Cherif, Arab Ali.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst, 10, (2013)

  70. Yu, Y., Danila, B., Marsh, J.A., Bassler, K.E.: Optimal transport on wireless networks. EPL 79(4), 48004 (2007)

    MathSciNet  Article  Google Scholar 

  71. Zhang, Fangbo, Bertozzi, Andrea L., Elamvazhuthi, Karthik, Berman, Spring: Performance bounds on spatial coverage tasks by stochastic robotic swarms. IEEE Trans. Autom. Control 63(6), 1473–1488 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by NSF Grants DMS-1830225, DMS-1620345, DMS-1720306, ONR N00014-21-1-2856, and ONR N00014-18-1-2852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Frederick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code Availability

The code generated during the current study is available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by grants NSF DMS-1830225, DMS-1620345, DMS-1720306, ONR N00014-21-1-2856, and ONR N00014-18-1-2852.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frederick, C., Egerstedt, M. & Zhou, H. Collective Motion Planning for a Group of Robots Using Intermittent Diffusion. J Sci Comput 90, 13 (2022). https://doi.org/10.1007/s10915-021-01700-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01700-y

Keywords

  • Path planning
  • Multi-agent systems
  • Optimal transport
  • Intermittent diffusion