Skip to main content
Log in

Arbitrary Lagrangian–Eulerian Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze an arbitrary Lagrangian–Eulerian local discontinuous Galerkin (ALE-LDG) method for one-dimensional linear convection–diffusion problems. The semi-discrete ALE-LDG method is shown to preserve \(L^{2}\)-stability and sub-optimal (\(k+\frac{1}{2}\)) convergence rate, when piecewise polynomials of degree k on the reference cell are used and Lax–Friedrichs flux is taken for the convection term. In addition, we also discuss three specific fully discrete ALE-LDG schemes, in which implicit–explicit Runge–Kutta (IMEX) time-marching is applied. With the aid of scaling arguments and the standard energy analysis, we prove that the corresponding fully discrete schemes are stable provided the time step \(\tau \le \tau _{0}\), where the positive constant \(\tau _{0}\) is independent of the mesh size h but depends on the convection and diffusion coefficients, the polynomial degree, and the moving grid function. Under the time step restriction, we obtain quasi-optimal error estimate in space and optimal convergence rate in time for the fully discrete schemes. Numerical examples are also given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during the current study are available from the corresponding author on reasonable request. They support our published claims and comply with field standards.

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Balázsová, M., Feistauer, M., Vlasák, M.: Stability of the ale space-time discontinuous Galerkin method for nonlinear convection–diffusion problems in time-dependent domains. ESAIM Math. Model. Numer. Anal. 52, 2327–2356 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71, 455–478 (2001)

  7. Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture notes in Computational Science and Engineering, vol. 11. Springer (2000)

  10. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin Heidelberg (2012)

    MATH  Google Scholar 

  16. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow. Springer, Berlin (2015)

  17. Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian methods. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics Fundamentals, vol. 1, pp. 413–437. Wiley, Hoboken (2004)

    Google Scholar 

  18. Feistauer, M., Kučera, V., Prokopová, J.: Discontinuous Galerkin solution of compressible flow in time-dependent domains. Math. Comput. Simul. 80, 1612–1623 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Fu, P., Schnücke, G., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes. Math. Comput. 88, 2221–2255 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Guillard, H., Farhat, C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Eng. 190, 1467–1482 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier colocation spectral method for 3-D viscous Burger’s equation. J. Sci. Comput. 53, 102–128 (2012)

  22. Hong, X., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method for hyperbolic equations involving \(\delta \)-singularities. SIAM J. Numer. Anal. 58, 125–152 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Kirk, K., Horvath, T., Cesmelioglu, A., Rhebergen, S.: Analysis of a space-time hybridizable discontinuous Galerkin method for the advection–diffusion problem on time-dependent domains. SIAM J. Numer. Anal. 57, 1677–1696 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian–Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension. Math. Comput. 86, 1203–1232 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Klingenberg, C., Schnücke, G., Xia, Y.: An arbitrary Lagrangian–Eulerian local discontinuous Galerkin method for Hamilton–Jacobi equations. J. Sci. Comput. 73, 906–942 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Kereš, D., Vogelsberger, M., Sijacki, D., Springel, V., Hernquist, L.: Moving-mesh cosmology: characteristics of galaxies and haloes. Mon. Not. R. Astron. Soc. 425, 2027–2048 (2012)

    Google Scholar 

  27. Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations. In: Proceedings of the Symposium Math. Res. Center, pp. 89–123. Univ. Wisconsin, Madison, Wis. (1974)

  29. Nguyen, V.-T.: An arbitrary Lagrangian–Eulerian discontinuous Galerkin method for simulations of flows over variable geometries. J. Fluids Struct. 26, 312–329 (2010)

    Google Scholar 

  30. Persson, P.-O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595 (2009)

    MATH  Google Scholar 

  31. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  33. Robinson, B.A., Yang, H.T., Batina, J.T.: Aeroelastic analysis of wings using the Euler equations with a deforming mesh. J. Aircraft 28, 781–788 (1991)

    Google Scholar 

  34. Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, Adv. Courses Math. CRM Barcelona, pp. 149–201. Birkhäuser, Besel, Switzerland (2009)

  35. Sudirham, J., van der Vegt, J., van Damme, R.: Space-time discontinuous Galerkin method for advection–diffusion problems on time-dependent domains. Appl. Numer. Math 56, 1491–1518 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Tao, Q., Xu, Y.: Superconvergence of arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57, 2142–2165 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Vlasák, M., Dolejší, V., Hájek, J.: A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection–diffusion problems. Numer. Methods Partial Differ. Equ. 27, 1456–1482 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Wang, H.J., Wang, S.P., Shu, C.-W., Zhang, Q.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM Math. Model. Numer. Anal. 50, 1083–1105 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.J.: The \(L^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57, 1574–1601 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for symmetrizable systems of conservation laws. SIAM J. Numer. Anal. 44, 1703–1720 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, L., Xu, Y.: Stability analysis and error estimates of semi-implicit spectral deferred correction coupled with local discontinuous Galerkin method for linear convection–diffusion equations. J. Sci. Comput. 77, 1001–1029 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zhou, L., Xia, Y., Shu, C.-W.: Stability analysis and error estimates of arbitrary Lagrangian–Eulerian discontinuous Galerkin method coupled with Runge–Kutta time-marching for linear conservation laws. ESAIM Math. Model. Numer. Anal. 53, 105–144 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Zhou: Research of this author is supported by NSFC Grant No. 12001171.

Y. Xia: Research supported by the National Numerical Windtunnel Project NNW2019ZT4-B08 and a NSFC Grant No. 11871449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Xia, Y. Arbitrary Lagrangian–Eulerian Local Discontinuous Galerkin Method for Linear Convection–Diffusion Equations. J Sci Comput 90, 21 (2022). https://doi.org/10.1007/s10915-021-01697-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01697-4

Keywords

Navigation