Skip to main content
Log in

A Novel Scheme to Capture the Initial Dramatic Evolutions of Nonlinear Subdiffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The solution of the nonlinear subdiffusion equation has the initial layer and its initial energy may decay very fast. Therefore, it is important to investigate the evolution of the solution at the beginning. In the paper, a transformed L1 scheme is proposed to capture the initial dramatic evolution. It is proved that the temporal error of the new method is \({\mathcal {O}}(\tau ^{2-\alpha })\), where \(\tau \) is the temporal stepsize and \(0<\alpha <1\). The error estimate holds even when \(t\rightarrow 0\). In contrast, the maximum errors of the uniform L1 scheme, the convolution quadrature (CQ) Euler method, CQ BDF method, and their corrected forms are usually \({\mathcal {O}}(\tau ^{\alpha })\) at the beginning. Meanwhile, the proposed time discretization is particularly effective for models with the small \(\alpha \) and their interesting numerical phenomena are reported for the first time. Finally, numerical comparison are provided with widely used L1-type methods, the CQ methods, and their corrected forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azevedo, E.N., de Sousa, P.L., de Souza, R.E., Engelsberg, M., Miranda, M., Silva, M.A.: Concentration-dependent diffusivity and anomalous diffusion: a magnetic resonance imaging study of water ingress in porous zeolite. Phys. Rev. E 73, 011204 (2006)

    Article  Google Scholar 

  2. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chepizhko, O., Peruani, F.: Diffusion, subdiffusion, and trapping of active particles in geterogeneous media. Phys. Rev. Lett. 111, 160604 (2013)

    Article  Google Scholar 

  4. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)

    Article  MathSciNet  Google Scholar 

  5. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  6. El Abd, A.E.-G., Milczarek, J.J.: Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis. J. Phys. D Appl. Phys. 37, 2305 (2004)

    Article  Google Scholar 

  7. Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)

  8. Inc, M., Yusuf, A., Aliyu, A., Baleanu, D.: Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Phys. A Stat. Mech. Appl. 493, 94–106 (2018)

    Article  MathSciNet  Google Scholar 

  9. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    Article  MathSciNet  Google Scholar 

  10. Küntz, M., Lavallée, P.: Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J. Phys. D Appl. Phys. 34, 2547 (2001)

  11. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A2129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kolk, M., Pedas, A., Tamme, E.: Modified spline collocation for linear fractional differential equations. J. Comput. Appl. Math. 283, 28–40 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kolk, M., Pedas, A., Tamme, E.: Smoothing transformation and spline collocation for linear fractional boundary value problems. Appl. Math. Comput. 283, 234–250 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Li, B., Wang, H., Wang, J.: Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order. ESAIM Math. Model. Numer. Anal. 55, 171–207 (2021)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Meth. Appl. 14, 355–376 (2021)

    Article  MathSciNet  Google Scholar 

  17. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrö dinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  Google Scholar 

  18. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non\(-\)smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, D., Zhang, C.: Long time numerical behaviors of fractional pantograph equations. Math. Comput. Simul. 172, 244–257 (2020)

    Article  MathSciNet  Google Scholar 

  20. Li, Z., Wang, H., Yang, D.: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347, 20–38 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  22. Liao, H., Mclean, W., Zhang, J.: A discrete Grö nwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liao, H., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  25. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  Google Scholar 

  26. Locinizak, L.P.: Numerical methods for the time-fractional porous medium equation. SIAM. J. Numer. Anal. 27, 638–656 (2019)

    MathSciNet  Google Scholar 

  27. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  28. Meerschaert, M.M., Sikorskii, A.: Stochastic models for fractional calculus. In: Carstensen, C., Farkas, G., Fusco, N., Gesztesy, F., Jacob, N., Li, Z., Neeb, K.-H. (eds.) De Gruyter Studies in Mathematics. De Gruyter, Berlin (2011)

    Google Scholar 

  29. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  30. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87, 2259–2272 (2018)

    Article  MathSciNet  Google Scholar 

  31. Mustapha, K.: An \(L1\) approximation for a factional reaction-diffusion equations, a second-order error analysis over time-graded meshes. SIAM. J. Numer. Anal. 58, 1319–1338 (2020)

    Article  MathSciNet  Google Scholar 

  32. Pedas, A., Vainikko, G.: Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations. Computing 73, 271–293 (2004)

    Article  MathSciNet  Google Scholar 

  33. She, M., Li, L., Tang, R., Li, D.: A novel numerical scheme for a time fractional Black–Scholes equation. J. Appl. Math. Comput. 66, 853–870 (2021)

    Article  MathSciNet  Google Scholar 

  34. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

  35. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  36. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase field equations. SIAM J. Sci. Comput. 41(6), A3757–A3778 (2019)

    Article  MathSciNet  Google Scholar 

  37. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Li.

Additional information

This work is supported in part by NSFC under Grants: 11771162, 11871092, and NSAF U1930402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Li, D. & Zhang, Z. A Novel Scheme to Capture the Initial Dramatic Evolutions of Nonlinear Subdiffusion Equations. J Sci Comput 89, 65 (2021). https://doi.org/10.1007/s10915-021-01672-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01672-z

Keywords

Mathematics Subject Classification

Navigation