Skip to main content
Log in

A FOM/ROM Hybrid Approach for Accelerating Numerical Simulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The basis generation in reduced order modeling usually requires multiple high-fidelity large-scale simulations that could take a huge computational cost. In order to accelerate these numerical simulations, we introduce a FOM/ROM hybrid approach in this paper. It is developed based on an a posteriori error estimation for the output approximation of the dynamical system. By controlling the estimated error, the method dynamically switches between the full-order model and the reduced-oder model generated on the fly. Therefore, it reduces the computational cost of a high-fidelity simulation while achieving a prescribed accuracy level. Numerical tests on the non-parametric and parametric PDEs illustrate the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asif, M.M.A., Ahmad, M.I., Benner, P., Feng, L., Stykel, T.: Implicit higher-order moment matching technique for model reduction of quadratic-bilinear systems. J. Franklin Inst. 358(3), 2015–2038 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bai, F., Wang, Y.: DEIM reduced order model constructed by hybrid snapshot simulation. SN Appl. Sci. 2(12), 1–25 (2020)

    Article  Google Scholar 

  3. Bai, F., Wang, Y.: Reduced-order modeling based on hybrid snapshot simulation. Int. J. Comput. Methods 18(01), 2050029 (2021)

    Article  MathSciNet  Google Scholar 

  4. Carlberg, K.: Adaptive h-refinement for reduced-order models. Int. J. Numer. Meth. Eng. 102(5), 1192–1210 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chellappa, S., Feng, L., Benner, P.: Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems. Int. J. Numer. Meth. Eng. 121(23), 5320–5349 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chellappa, S., Feng, L., Benner, P.: A training set subsampling strategy for the reduced basis method. arXiv preprint arXiv:2103.06185, (2021)

  7. Chen, F., Hesthaven, J. S., Zhu, X.: On the use of reduced basis methods to accelerate and stabilize the parareal method. In: Reduced Order Methods for modeling and computational reduction, pages 187–214. Springer, 2014

  8. Cohen, A., Dahmen, W., DeVore, R., Nichols, J.: Reduced basis greedy selection using random training sets. ESAIM. Math. Model. Numer. Anal. 54(5), 1509–1524 (2020)

    Article  MathSciNet  Google Scholar 

  9. Drmac, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method–improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(2), A631–A648 (2016)

    Article  MathSciNet  Google Scholar 

  10. Esfahanian, V., Ashrafi, K.: Equation-free/Galerkin-free reduced-order modeling of the shallow water equations based on proper orthogonal decomposition. Journal of fluids engineering, 131(7), 2009

  11. Etter, P.A., Carlberg, K.T.: Online adaptive basis refinement and compression for reduced-order models via vector-space sieving. Comput. Methods Appl. Mech. Eng. 364, 112931 (2020)

    Article  MathSciNet  Google Scholar 

  12. Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Meth. Eng. 67(5), 697–724 (2006)

    Article  MathSciNet  Google Scholar 

  13. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. arXiv preprint arXiv:2101.11845, (2021)

  14. Gu, C.: QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Trans. Comput. Aided Des. Integr. Circuits. Syst. 30(9), 1307–1320 (2011)

    Article  Google Scholar 

  15. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM. Math. Model. Numer. Anal. 42(02), 277–302 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hesthaven, J. S., Pagliantini, C., Ripamonti, N.: Rank-adaptive structure-preserving reduced basis methods for Hamiltonian systems. arXiv preprint arXiv:2007.13153, (2020)

  17. Kim, Y., Choi, Y., Widemann, D., Zohdi, T.: Efficient nonlinear manifold reduced order model. arXiv preprint arXiv:2011.07727, (2020)

  18. Lee, K., Carlberg, K.: Deep conservation: A latent-dynamics model for exact satisfaction of physical conservation laws. arXiv preprint arXiv:1909.09754, (2019)

  19. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020)

    Article  MathSciNet  Google Scholar 

  20. Maday, Y., Mula, O.: An adaptive parareal algorithm. J. Comput. Appl. Math. 377, 112915 (2020)

    Article  MathSciNet  Google Scholar 

  21. Maulik, R., Lusch, B., Balaprakash, P.: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids 33(3), 037106 (2021)

    Article  Google Scholar 

  22. Peherstorfer, B.: Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM J. Sci. Comput. 42(5), A2803–A2836 (2020)

    Article  MathSciNet  Google Scholar 

  23. San, O., Maulik, R.: Neural network closures for nonlinear model order reduction. Adv. Comput. Math. 44(6), 1717–1750 (2018)

    Article  MathSciNet  Google Scholar 

  24. Sirisup, S., Karniadakis, G.E., Xiu, D., Kevrekidis, I.G.: Equation-free/Galerkin-free POD-assisted computation of incompressible flows. J. Comput. Phys. 207, 568–587 (2005)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., McBee, B., Iliescu, T.: Approximate partitioned method of snapshots for POD. J. Comput. Appl. Math. 307, 374–384 (2016)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y., Feng, L., Li, S., Benner, P.: An efficient output error estimation for model order reduction of parametrized evolution equations. SIAM J. Sci. Comput. 37(6), B910–B936 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Wang.

Additional information

The authors acknowledge the support from the Institute for Computational and Experimental Research in Mathematics (ICERM) at Brown University for participating the “Model and dimension reduction in uncertain and dynamic systems" semester program in Spring 2020, which were supported by the National Science Foundation under Grant No. DMS-1439786 and the Simons Foundation Grant No. 50736. Z. Wang was partially supported by the National Science Foundation through Grants No. DMS-1913073, 2012469 and the U.S. Department of Energy Grant No. DE-SC0020270. The authors are grateful to the anonymous referees for their helpful comments and suggestions.

Appendix

Appendix

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Fu, G. & Wang, Z. A FOM/ROM Hybrid Approach for Accelerating Numerical Simulations. J Sci Comput 89, 61 (2021). https://doi.org/10.1007/s10915-021-01668-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01668-9

Keywords

Navigation