Skip to main content
Log in

An Unfitted Finite Element Method for Two-Phase Stokes Problems with Slip Between Phases

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present an isoparametric unfitted finite element approach of the CutFEM or Nitsche-XFEM family for the simulation of two-phase Stokes problems with slip between phases. For the unfitted generalized Taylor–Hood finite element pair \({\mathbf {P}}_{k+1}-P_k\), \(k\ge 1\), we show an inf-sup stability property with a stability constant that is independent of the viscosity ratio, slip coefficient, position of the interface with respect to the background mesh and, of course, mesh size. In addition, we prove stability and optimal error estimates that follow from this inf-sup property. We provide numerical results in two and three dimensions to corroborate the theoretical findings and demonstrate the robustness of our approach with respect to the contrast in viscosity, slip coefficient value, and position of the interface relative to the fixed computational mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for Stokes interface problems. Comput. Methods Appl. Mech. Eng. 293, 170–190 (2015). https://doi.org/10.1016/j.cma.2015.04.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  3. Basting, S., Quaini, A., Canic, S., Glowinski, R.: Extended ALE method for fluid-structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017). https://doi.org/10.1016/j.jcp.2016.11.043

    Article  MathSciNet  MATH  Google Scholar 

  4. Basting, S., Weismann, M.: A hybrid level set/front tracking approach for finite element simulations of two-phase flows. J. Comput. Appl. Math. 270, 471–483 (2014). https://doi.org/10.1016/j.cam.2013.12.014

    Article  MathSciNet  MATH  Google Scholar 

  5. Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979)

    Article  MathSciNet  Google Scholar 

  6. Bordas, S., Burman, E., Larson, M., Olshanskii, M.A.: Geometrically Unfitted Finite Element Methods and Applications, Lecture Notes in Computational Science and Engineering, vol. 121. Springer, Berlin (2018)

  7. Brenner, S.C.: Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73(247), 1067–1087 (2004)

  8. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21-22), 1217–1220 (2010). https://doi.org/10.1016/j.crma.2010.10.006

  9. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cutfem: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  Google Scholar 

  10. Burman, E., Delay, G., Ern, A.: An unfitted hybrid high-order method for the Stokes interface problem. hal-02519896v3 (2020)

  11. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012). https://doi.org/10.1016/j.apnum.2011.01.008. Third Chilean Workshop on Numerical Analysis of Partial Differential Equations (WONAPDE 2010)

  12. Cáceres, E., Guzmán, J., Olshanskii, M.: New stability estimates for an unfitted finite element method for two-phase Stokes problem. SIAM J. Numer. Anal. 58(4), 2165–2192 (2020)

    Article  MathSciNet  Google Scholar 

  13. Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. ASME J. Appl. Mech. 70, 10–17 (2003)

    Article  MathSciNet  Google Scholar 

  14. Claus, S., Kerfriden, P.: A CutFEM method for two-phase flow problems. Comput. Methods Appl. Mech. Eng. 348, 185–206 (2019). https://doi.org/10.1016/j.cma.2019.01.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Donea, J., Huerta, A., Ponthot, J.P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian Methods, Chap. 14. Wiley (2004)

  16. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2013)

    MATH  Google Scholar 

  17. Frachon, T., Zahedi, S.: A cut finite element method for incompressible two-phase Navier–Stokes flows. J. Comput. Phys. 384, 77–98 (2019). https://doi.org/10.1016/j.jcp.2019.01.028

    Article  MathSciNet  MATH  Google Scholar 

  18. Fries, T.P.: The intrinsic XFEM for two-fluid flows. Int. J. Numer. Methods Fluids 60(4), 437–471 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gangl, P., Sturm, K., Neunteufel, M., Schöberl, J.: Fully and semi-automated shape differentiation in NGSolve (2020). arXiv:2004.06783

  20. Groß, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9, 239–257 (2006)

    Article  MathSciNet  Google Scholar 

  21. Guzmán, J., Olshanskii, M.: Inf-sup stability of geometrically unfitted Stokes finite elements. Math. Comput. 87(313), 2091–2112 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

  23. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014). https://doi.org/10.1016/j.apnum.2014.06.009

    Article  MathSciNet  MATH  Google Scholar 

  24. Hapanowicz, J.: Slip between the phases in two-phase water-oil flow in a horizontal pipe. Int. J. Multiph. Flow 34(6), 559–566 (2008). https://doi.org/10.1016/j.ijmultiphaseflow.2007.12.002

    Article  Google Scholar 

  25. Hashemi, M.R., Ryzhakov, P.B., Rossi, R.: An enriched finite element/level-set method for simulating two-phase incompressible fluid flows with surface tension. Comput. Methods Appl. Mech. Eng. 370, 113277 (2020). https://doi.org/10.1016/j.cma.2020.113277

    Article  MathSciNet  MATH  Google Scholar 

  26. He, X., Song, F., Deng, W.: Stabilized nonconforming Nitsche’s extended finite element method for Stokes interface problems (2019). arXiv:1905.04844

  27. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999). https://doi.org/10.1006/jcph.1999.6332

    Article  MathSciNet  MATH  Google Scholar 

  28. Kermani, M.J., Stockie, J.M.: The effect of slip velocity on saturation for multiphase condensing mixtures in a PEM fuel cell. Int. J. Hydrog. Energy 36(20), 13235–13240 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.005

  29. Kirchhart, M., Gross, S., Reusken, A.: Analysis of an XFEM discretization for Stokes interface problems. SIAM J. Sci. Comput. 38(2), A1019–A1043 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300, 716–733 (2016)

    Article  MathSciNet  Google Scholar 

  31. Lehrenfeld, C.: A higher order isoparametric fictitious domain method for level set domains. In: Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically unfitted finite element methods and applications, pp. 65–92. Springer, Cham (2017)

    Chapter  Google Scholar 

  32. Lehrenfeld, C., Olshanskii, M.: An Eulerian finite element method for PDEs in time-dependent domains. ESAIM Math. Model. Numer. Anal. 53(2), 585–614 (2019)

    Article  MathSciNet  Google Scholar 

  33. Lehrenfeld, C., Reusken, A.: Analysis of a high-order unfitted finite element method for elliptic interface problems. IMA J. Numer. Anal. 38(3), 1351–1387 (2018)

    Article  MathSciNet  Google Scholar 

  34. Ludescher, T., Gross, S., Reusken, A.: A multigrid method for unfitted finite element discretizations of elliptic interface problems. SIAM J. Sci. Comput. 42(1), A318–A342 (2020)

    Article  MathSciNet  Google Scholar 

  35. Massing, A., Larson, M., Logg, A., Rognes, M.: A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer. Math. 128, 73–101 (2014)

    Article  MathSciNet  Google Scholar 

  36. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  Google Scholar 

  37. Netgen/NGSolve. https://ngsolve.org/

  38. ngsxfem. https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0

  39. Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129–149 (2006)

    Article  MathSciNet  Google Scholar 

  40. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005). https://doi.org/10.1016/j.jcp.2005.04.007

    Article  MathSciNet  MATH  Google Scholar 

  41. Preuß, J.: Higher order unfitted isoparametric space-time FEM on moving domains. Master’s thesis, NAM, University of Göttingen (2018). http://num.math.uni-goettingen.de/~lehrenfeld/sections/pubs_src/Pre18_Ma.pdf

  42. Sauerland, H., Fries, T.P.: The stable XFEM for two-phase flows. Comput. Fluids 87, 41–49 (2013). https://doi.org/10.1016/j.compfluid.2012.10.017

    Article  MathSciNet  MATH  Google Scholar 

  43. Stein, E.M.: Singular integrals and differentiability properties of functions, vol. 30. Princeton University Press (1970)

  44. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994). https://doi.org/10.1006/jcph.1994.1155

    Article  MATH  Google Scholar 

  45. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. (USA) 100, 25–37 (1992). https://doi.org/10.1016/0021-9991(92)90307-K

    Article  MATH  Google Scholar 

  46. von Wahl, H., Richter, T., Lehrenfeld, C.: An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. ArXiv preprint (2020). arXiv:2002.02352

  47. Wang, N., Chen, J.: A nonconforming Nitsche’s extended finite element method for Stokes interface problems. J. Sci. Comput. 81, 342–374 (2019)

  48. Wang, Q., Chen, J.: A new unfitted stabilized Nitsche’s finite element method for Stokes interface problems. Comput. Math. Appl. 70(5), 820–834 (2015)

Download references

Acknowledgements

We are grateful to Dr. Christoph Lehrenfeld for providing us with the ngsxfem script for two-phase Stokes with no slip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by US National Science Foundation (NSF) through Grant DMS-1953535. M.O. also acknowledges the support from NSF through DMS-2011444. A.Q. also acknowledges the support from NSF through DMS-1620384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olshanskii, M., Quaini, A. & Sun, Q. An Unfitted Finite Element Method for Two-Phase Stokes Problems with Slip Between Phases. J Sci Comput 89, 41 (2021). https://doi.org/10.1007/s10915-021-01658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01658-x

Keywords

Navigation