Skip to main content
Log in

Efficient Spectral Methods for Quasi-Equilibrium Closure Approximations of Symmetric Problems on Unit Circle and Sphere

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Quasi-equilibrium approximation is a widely used closure approximation approach for model reduction with applications in complex fluids, materials science, etc. It is based on the maximum entropy principle and leads to thermodynamically consistent coarse-grain models. However, its high computational cost is a known barrier for fast and accurate applications. Despite its good mathematical properties, there are very few works on the fast and efficient implementations of quasi-equilibrium approximations. In this paper, we give efficient implementations of quasi-equilibrium approximations for antipodally symmetric problems on unit circle and unit sphere using global polynomial and piecewise polynomial approximations. Comparing to the existing methods using linear or cubic interpolations, our approach achieves high accuracy (double precision) with much less storage cost. The methods proposed in this paper can be directly extended to handle other moment closure approximation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All data and code generated or used during the study are available from the corresponding author by request.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S, Department of Commerce (1972)

  2. Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  3. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2(6), 1201–1225 (1974)

    Article  MathSciNet  Google Scholar 

  4. Chaubal, C.V., Gary Leal, L.: A closure approximation for liquid-crystalline polymer models based on parametric density estimation. J. Rheol. 42(1), 177 (1998)

    Article  Google Scholar 

  5. Cintra, J.S., Jr., Tucker, C.L., III.: Orthotropic closure approximations for flow-induced fiber orientation. J. Rheol. 39, 1095 (1995)

    Article  Google Scholar 

  6. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, New York (1986)

    Google Scholar 

  7. Feng, J., Chaubal, C.V., Leal, L.G.: Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers? J. Rheol. 42, 1095 (1998)

    Article  Google Scholar 

  8. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, New York (1902)

  9. Gorban, A., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, vol. 660. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Gorban, A.N., Karlin, I.V., Ilg, P., Öttinger, H.C.: Corrections and enhancements of quasi-equilibrium states. J. Non-Newton. Fluid Mech. 96(1), 203–219 (2001)

    Article  Google Scholar 

  11. Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Constructive methods of invariant manifolds for kinetic problems. Phys. Rep. 396(4), 197–403 (2004)

    Article  MathSciNet  Google Scholar 

  12. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  13. Grosso, M., Maffettone, P.L., Dupret, F.: A closure approximation for nematic liquid crystals based on the canonical distribution subspace theory. Rheol. Acta 39(3), 301–310 (2000)

    Article  Google Scholar 

  14. Hinch, E., Leal, L.: Constitutive equations in suspension mechanics. Part II. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76, 187–208 (1976)

    Article  Google Scholar 

  15. Hu, D., Lelièvre, T.: New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 5(4), 909–916 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ilg, P., Karlin, I.V., Kröger, M., Öttinger, H.C.: Canonical distribution functions in polymer dynamics. (II). Liquid-crystalline polymers. Phys. A Stat. Mech. Appl. 319, 134–150 (2003)

    Article  Google Scholar 

  17. Ilg, P., Karlin, I.V., Öttinger, H.C.: Canonical distribution functions in polymer dynamics. (I). Dilute solutions of flexible polymers. Phys. Stat. Mech. Appl. 315(3–4), 367–385 (2002)

    Article  Google Scholar 

  18. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  19. Johansson, F., et al.: Mpmath: A Python library for arbitrary-precision floating-point arithmetic (version 1.1.0) (2020)

  20. Kent, J.T.: The Fisher–Bingham distribution on the sphere. J. R. Stat. Soc. Ser. B Methodol. 44(1), 71–80 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  22. Li, B., Tang, S., Haijun, Y.: Better approximations of high dimensional smooth functions by deep neural networks with rectified power units. Commun. Comput. Phys. 27(2), 379–411 (2020)

    Article  MathSciNet  Google Scholar 

  23. Luo, Y., Jie, X., Zhang, P.: A fast algorithm for the moments of Bingham distribution. J. Sci. Comput. 1–14 (2017)

  24. Maier, W., Saupe, A.: Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes. Z. Naturforsch. A 13, 564 (1958)

    Article  Google Scholar 

  25. Mead, L.R., Papanicolaou, N.: Maximum entropy in the problem of moments. J. Math. Phys. 25(8), 2404–2417 (1984)

    Article  MathSciNet  Google Scholar 

  26. Olver, F.W.J. (ed.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  27. Schimming, C.D., Viñals, J., Walker, S.W.: Numerical method for the equilibrium configurations of a Maier–Saupe bulk potential in a Q-tensor model of an anisotropic nematic liquid crystal. J. Comput. Phys. 441, 110441 (2021)

    Article  MathSciNet  Google Scholar 

  28. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926)

    Article  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms. Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  30. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)

    Article  MathSciNet  Google Scholar 

  31. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic equations II: Unbounded domains. SIAM J. Sci. Comput. 34(2), 1141–1164 (2012)

    Article  MathSciNet  Google Scholar 

  32. Sra, S.: A short note on parameter approximation for von Mises–Fisher distributions: and a fast implementation of Is(x). Comput. Stat. 27(1), 177–190 (2012)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Li, K., Zhang, P.: Crucial properties of the moment closure model FENE-QE. J. Non-Newton. Fluid Mech. 150(2–3), 80–92 (2008)

    Article  Google Scholar 

  34. Weady, S., Stein, D.B., Shelley, M.J.: A fast Chebyshev method for the Bingham closure with application to active nematic suspensions. ArXiv:2106.14817 Cs Math (2021)

  35. Xu, J.: Quasi-entropy by log-determinant covariance matrix and application to liquid crystals. ArXiv:2007.15786 Cond-Mat Physicsmath-Ph (2020)

  36. Yu, H., Zhang, P.: A kinetic-hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow. J. Non-Newton. Fluid Mech. 141(2–3), 116–127 (2007)

    Article  Google Scholar 

  37. Yu, H., Ji, G., Zhang, P.: A nonhomogeneous kinetic model of liquid crystal polymers and its thermodynamic closure approximation. Commun. Comput. Phys. 7(2), 383 (2010)

    Article  MathSciNet  Google Scholar 

  38. Yu, H., Tian, X., Li, Q.: OnsagerNet: Learning stable and interpretable dynamics using a generalized Onsager principle. arXiv:2009.02327 (2020)

Download references

Acknowledgements

The authors would like to thank Prof. Chuanju Xu, Li-Lian Wang and Dr. Jie Xu for helpful discussions. This work is partially supported by NNSFC Grant 11771439, 91852116 and China Science Challenge Project No. TZ2018001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yu, H. Efficient Spectral Methods for Quasi-Equilibrium Closure Approximations of Symmetric Problems on Unit Circle and Sphere. J Sci Comput 89, 43 (2021). https://doi.org/10.1007/s10915-021-01646-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01646-1

Keywords

Mathematics Subject Classification

Navigation