Skip to main content
Log in

Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze the convergence of the one-level overlapping domain decomposition preconditioner SORAS (Symmetrized Optimized Restricted Additive Schwarz) applied to a generic linear system whose matrix is not necessarily symmetric/self-adjoint nor positive definite. By generalizing the theory for the Helmholtz equation developed in Graham et al. (SIAM J Numer Anal 58(5):2515–2543, 2020. https://doi.org/10.1137/19M1272512), we identify a list of assumptions and estimates that are sufficient to obtain an upper bound on the norm of the preconditioned matrix, and a lower bound on the distance of its field of values from the origin. We stress that our theory is general in the sense that it is not specific to one particular boundary value problem. Moreover, it does not rely on a coarse mesh whose elements are sufficiently small. As an illustration of this framework, we prove new estimates for overlapping domain decomposition methods with Robin-type transmission conditions for the heterogeneous reaction–convection–diffusion equation (to prove the stability assumption for this equation we consider the case of a coercive bilinear form, which is non-symmetric, though).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Absorbing boundary conditions are approximations of transparent boundary conditions. Basic absorbing boundary conditions are Robin-type boundary conditions, which consist in a weighted combination of Neumann-type and Dirichlet-type boundary conditions. Their precise definition depends on the specific problem. For instance, for Maxwell equations impedance boundary conditions are Robin-type absorbing boundary conditions.

References

  1. Achdou, Y., Le Tallec, P., Nataf, F., Vidrascu, M.: A domain decomposition preconditioner for an advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 184, 145–170 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alart, P., Barboteu, M., Le Tallec, P., Vidrascu, M.: Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 331(5), 399–404 (2000)

  3. Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

  4. Beckermann, B., Goreinov, S.A., Tyrtyshnikov, E.E.: Some remarks on the Elman estimate for GMRES. SIAM J. Matrix Anal. Appl. 27(3), 772–778 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bonazzoli, M., Dolean, V., Graham, I.G., Spence, E.A., Tournier, P.H.: Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption. Math. Comput. 88(320), 2559–2604 (2019). https://doi.org/10.1090/mcom/3447

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgat, J.F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational formulation and algorithm for trace operator in domain decomposition calculations. In: Domain Decomposition Methods, pp. 3–16. SIAM, Philadelphia, PA (1989)

  7. Cai, X.C.: Additive Schwarz algorithms for parabolic convection–diffusion equations. Numer. Math. 60(1), 41–61 (1991)

    Article  MathSciNet  Google Scholar 

  8. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.F., Zou, J.: A convergence theory of multilevel additive Schwarz methods on unstructured meshes. Numer. Algorithms 13(2), 365–398 (1996). https://doi.org/10.1007/BF02207701

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co. (1978)

  11. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation. SIAM, Philadelphia, PA (2015). https://doi.org/10.1137/1.9781611974065.ch1

  12. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)

    Article  MathSciNet  Google Scholar 

  13. Elman, H.C.: Iterative methods for large, sparse, nonsymmetric systems of linear equations. Ph.D. thesis, Yale University New Haven, Conn (1982)

  14. Essai, A.: Weighted FOM and GMRES for solving nonsymmetric linear systems. Numer. Algorithms 18(3–4), 277–292 (1998). https://doi.org/10.1023/A:1019177600806

    Article  MathSciNet  MATH  Google Scholar 

  15. Gong, S., Graham, I.G., Spence, E.A.: Domain decomposition preconditioners for high-order discretizations of the heterogeneous Helmholtz equation. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa080

    Article  Google Scholar 

  16. Graham, I.G., Spence, E.A., Vainikko, E.: Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption. Math. Comput. 86(307), 2089–2127 (2017). https://doi.org/10.1090/mcom/3190

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, I.G., Spence, E.A., Zou, J.: Domain decomposition with local impedance conditions for the Helmholtz equation with absorption. SIAM J. Numer. Anal. 58(5), 2515–2543 (2020). https://doi.org/10.1137/19M1272512

    Article  MathSciNet  MATH  Google Scholar 

  18. Greenbaum, A., Ptak, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17(3), 465–469 (1996)

    Article  MathSciNet  Google Scholar 

  19. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995). https://doi.org/10.1007/s002110050115

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985)

    MATH  Google Scholar 

  21. Haferssas, R., Jolivet, P., Nataf, F.: A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2. C. R. Math. Acad. Sci. Paris 353(10), 959–963 (2015). https://doi.org/10.1016/j.crma.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  22. Japhet, C., Nataf, F., Rogier, F.: The optimized order 2 method: Application to convection–diffusion problems. Future Gener. Comput. Syst. 18(1), 17–30 (2001). https://doi.org/10.1016/S0167-739X(00)00072-8

    Article  MATH  Google Scholar 

  23. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  24. Kimn, J.H., Sarkis, M.: Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem. Comput. Methods Appl. Mech. Eng. 196(8), 1507–1514 (2007). https://doi.org/10.1016/j.cma.2006.03.016

    Article  MathSciNet  MATH  Google Scholar 

  25. Lube, G., Mueller, L., Otto, F.C.: A non-overlapping domain decomposition method for the advection–diffusion problem. Computing 64, 49–68 (2000)

    Article  MathSciNet  Google Scholar 

  26. Nataf, F., Rogier, F.: Factorization of the convection-diffusion operator and the Schwarz algorithm. \(M^3AS\)5(1), 67–93 (1995)

  27. Nepomnyaschikh, S.V.: Mesh theorems of traces, normalizations of function traces and their inversions. Sov. J. Numer. Anal. Math. Model. 6, 1–25 (1991)

    Article  MathSciNet  Google Scholar 

  28. Quarteroni, A.M.: Numerical Models for Differential Problems, vol. 2. Springer (2009)

  29. Spence, E.A.: When all else fails, integrate by parts—an overview of new and old variational formulations for linear elliptic PDEs, pp. 93–159. SIAM (2015). https://doi.org/10.1137/1.9781611973822.ch6

  30. St-Cyr, A., Gander, M.J., Thomas, S.J.: Optimized multiplicative, additive, and restricted additive Schwarz preconditioning. SIAM J. Sci. Comput. 29(6), 2402–2425 (2007). https://doi.org/10.1137/060652610

    Article  MathSciNet  MATH  Google Scholar 

  31. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Bonazzoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonazzoli, M., Claeys, X., Nataf, F. et al. Analysis of the SORAS Domain Decomposition Preconditioner for Non-self-adjoint or Indefinite Problems. J Sci Comput 89, 19 (2021). https://doi.org/10.1007/s10915-021-01631-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01631-8

Keywords

Mathematics Subject Classification

Navigation