Skip to main content
Log in

The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work devotes to developing a systematic and convenient approach based on the celebrated convolution quadrature theory to design and analyze difference formulas for fractional calculus at an arbitrary shifted point \(x_{n-\theta }\). The developed theory, called shifted convolution quadrature (SCQ), covers most difference formulas from the aspects of characterizing the formation of related generating functions which are convergent with integer orders. For stability reasons, the theoretical determination of shifted parameter \(\theta \) is provided to fill the gap in which the choice of \(\theta \) depends heavily on experiments particularly for non-integer order derivatives. Further, to discuss the effects of \(\theta \) on A(\(\delta \))-stability, stability regions for several generalized popular formulas within SCQ are examined which are crucial to developing robust numerical schemes. Some numerical tests are also considered to demonstrate the necessity of introducing \(\theta \) for theoretical and practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  2. Li, J., Huang, Y., Lin, Y.: Developing finite element methods for Maxwell’s equations in a Cole–Cole dispersive medium. SIAM J. Sci. Comput. 33(6), 3153–3174 (2011)

  3. Yang, X.: General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC, Boca Raton (2019)

    Book  MATH  Google Scholar 

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  5. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  6. Chen, H., Holland, F., Stynes, M.: An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 139, 52–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, N., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, L., Liu, F., Turner, I., Yang, Q., Zhuang, P.: Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains. Appl. Math. Model. 59, 441–463 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, M., Cheng, A., Wang, H.: A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 22(9), 3529–3545 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Yin, B., Liu, Y., Li, H., Zhang, Z.: Finite element methods based on two families of second-order numerical formulas for the fractional cable model with smooth solutions. J. Sci. Comput. 84(1), 2 (2020)

  13. Yin, B., Liu, Y., Li, H., Zhang, Z.: Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations (2019). arXiv:1906.01242

  14. Yang, X., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baffet, D., Hesthaven, J.S.: High-order accurate local schemes for fractional differential equations. J. Sci. Comput. 70(1), 355–385 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding, H., Li, C., Yi, Q.: A new second-order midpoint approximation formula for Riemann–Liouville derivative: algorithm and its application. IMA J. Appl. Math. 82(5), 909–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gunarathna, W.A., Nasir, H.M., Daundasekera, W.B.: An explicit form for higher order approximations of fractional derivatives. Appl. Numer. Math. 143, 51–60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Cai, M.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations: revisited. Numer. Funct. Anal. Optim. 38(7), 861–890 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, M., Deng, W.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16(2), 516–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao, G., Sun, H., Sun, Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, 1554–1562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dimitrov, Y.: Numerical approximations for fractional differential equations (2013). arXiv:1311.3935

  33. Tadjeran, C., Meerschaert, M.M., Scheffer, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Y., Du, Y., Li, H., Wang, J.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Du, Y., Liu, Y., Li, H., Fang, Z., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Y., Zhang, M., Li, H., Li, J.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ji, C., Sun, Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64(3), 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Y., Du, Y., Li, H., Liu, F., Wang, Y.: Some second-order \(\theta \) schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 80(2), 533–555 (2019). https://doi.org/10.1007/s11075-018-0496-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Lubich, C.: A stability analysis of convolution quadraturea for Abel–Volterra integral equations. IMA J. Numer. Anal. 6(1), 87–101 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88(319), 2157–2186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, B., Wang, K., Zhou, Z.: Long-time accurate symmetrized implicit-explicit BDF methods for a class of parabolic equations with non-self-adjoint operators. SIAM J. Numer. Anal. 58(1), 189–210 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported in part by the NSFC Grant 12061053, the NSF of Inner Mongolia 2020MS01003. The work of the third author was supported in part by the NSFC Grant 12161063, the NSF of Inner Mongolia 2021MS01018. The work of the fourth author was supported in part by Grants NSFC 11871092 and NSAF U1930402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yin, B., Li, H. et al. The Unified Theory of Shifted Convolution Quadrature for Fractional Calculus. J Sci Comput 89, 18 (2021). https://doi.org/10.1007/s10915-021-01630-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01630-9

Keywords

Navigation