Skip to main content
Log in

Traveling Wave Solutions of Partial Differential Equations Via Neural Networks

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper focuses on how to approximate traveling wave solutions for various kinds of partial differential equations via artificial neural networks. A traveling wave solution is hard to obtain with traditional numerical methods when the corresponding wave speed is unknown in advance. We propose a novel method to approximate both the traveling wave solution and the unknown wave speed via a neural network and an additional free parameter. We proved that under a mild assumption, the neural network solution converges to the analytic solution and the free parameter accurately approximates the wave speed as the corresponding loss tends to zero for the Keller–Segel equation. We also demonstrate in the experiments that reducing loss through training assures an accurate approximation of the traveling wave solution and the wave speed for the Keller–Segel equation, the Allen–Cahn model with relaxation, and the Lotka–Volterra competition model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ali, A., Shah, K., Khan, R.A.: Numerical treatment for traveling wave solutions of fractional whitham-broer-kaup equations. Alex. Eng. J. 57(3), 1991–1998 (2018)

    Article  Google Scholar 

  2. Bramburger, J.J.: Exact minimum speed of traveling waves in a keller-segel model. Appl. Math. Lett. 111, 106594 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chen, X., Liu, G., Qi, Y.: The existence of minimum speed of traveling wave solutions to a non-kpp isothermal diffusion system. J. Differ. Equ. 263(3), 1695–1707 (2017)

    Article  MathSciNet  Google Scholar 

  4. Guo, J.-S., Lin, Y.-C.: The sign of the wave speed for the lotka-volterra competition-diffusion system. Commun. Pure Appl. Anal. 12(5), 2083 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hagan, P.S.: Traveling wave and multiple traveling wave solutions of parabolic equations. SIAM J. Math. Anal. 13(5), 717–738 (1982)

    Article  MathSciNet  Google Scholar 

  6. Hagstrom, T., Keller, H.B.: The numerical calculation of traveling wave solutions of nonlinear parabolic equations. SIAM J. Sci. Stat. Comput. 7(3), 978–988 (1986)

    Article  MathSciNet  Google Scholar 

  7. He, J.-H., Xu-Hong, W.: Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals 30(3), 700–708 (2006)

    Article  MathSciNet  Google Scholar 

  8. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  9. Hwang, H.J., Jang, J.W., Jo, H., Lee, J.Y.: Trend to equilibrium for the kinetic fokker-planck equation via the neural network approach, J. Comput. Phys. 419, 109665 (2020)

  10. Jo, H., Son, H., Hwang, H.J., Kim, E.H.: Deep neural network approach to forward-inverse problems. Netw. Heterogen. Media 15(2), 247–259 (2020)

    Article  MathSciNet  Google Scholar 

  11. Kan-On, Y.: Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26(2), 340–363 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kaya, D., Inan, I.E.: Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation. Appl. Math. Comput. 151(3), 775–787 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30(2), 235–248 (1971)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  15. Larson, D.A.: Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of fisher type. SIAM J. Appl. Math. 34(1), 93–104 (1978)

    Article  MathSciNet  Google Scholar 

  16. Lattanzio, C., Mascia, C., Plaza, R.G., Simeoni, C.: Analytical and numerical investigation of traveling waves for the allen-cahn model with relaxation. Math. Models Methods Appl. Sci. 26(05), 931–985 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, T., Wang, Z.-A.: Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J. Differ. Equ. 250(3), 1310–1333 (2011)

    Article  MathSciNet  Google Scholar 

  18. Li, T., Wang, Z.-A.: Steadily propagating waves of a chemotaxis model. Math. Biosci. 240(2), 161–168 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, X.: Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 12(4), 327–343 (1996)

    Article  Google Scholar 

  20. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021)

    Article  MathSciNet  Google Scholar 

  21. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)

    Article  MathSciNet  Google Scholar 

  22. Mansour, M.B.A.: Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation. Appl. Math. Model. 32(2), 240–247 (2008)

    Article  Google Scholar 

  23. Méndez, V., Fort, J., Farjas, J.: Speed of wave-front solutions to hyperbolic reaction-diffusion equations. Phys. Rev. E 60(5), 5231 (1999)

    Article  MathSciNet  Google Scholar 

  24. Murray, J.D.: Mathematical Biology: I. An Introduction, vol. 17. Springer, Berlin (2007)

    Google Scholar 

  25. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch, paper was published in 2017 by NeurIPS, Autodiff Workshop

  26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library, arXiv preprint arXiv:1912.01703 (2019)

  27. Qin, C.-Y., Tian, S.-F., Wang, X.-B., Zhang, T.-T., Li, J.: Rogue waves, bright-dark solitons and traveling wave solutions of the (3+ 1)-dimensional generalized kadomtsev-petviashvili equation. Comput. Math. Appl. 75(12), 4221–4231 (2018)

    Article  MathSciNet  Google Scholar 

  28. Rosu, H.C., Cornejo-Pérez, O.: Supersymmetric pairing of kinks for polynomial nonlinearities. Phys. Rev. E 71(4), 046607 (2005)

    Article  MathSciNet  Google Scholar 

  29. Salako, R., Shen, W.: Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on r\(^{\wedge }\) n, arXiv preprint arXiv:1609.05387 (2016)

  30. Sirignano, J., Spiliopoulos, K.: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  31. Tariq, H., Akram, G.: New traveling wave exact and approximate solutions for the nonlinear cahn-allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88(1), 581–594 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wang, Q., Chen, Y., Zhang, H.: A new riccati equation rational expansion method and its application to (2+ 1)-dimensional burgers equation. Chaos, Solitons Fractals 25(5), 1019–1028 (2005)

    Article  MathSciNet  Google Scholar 

  33. Wang, Z.-C., Li, W.-T., Ruan, S.: Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Differ. Equ. 238(1), 153–200 (2007)

    Article  MathSciNet  Google Scholar 

  34. Wazwaz, A.-M.: The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188(2), 1467–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Shi-Liang, W., Chen, G.: Uniqueness and exponential stability of traveling wave fronts for a multi-type sis nonlocal epidemic model. Nonlinear Anal. Real World Appl. 36, 267–277 (2017)

    Article  MathSciNet  Google Scholar 

  36. Xin, X.: Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Diff. Equat. 3(4), 541–573 (1991)

    Article  MathSciNet  Google Scholar 

  37. Yang, C., Rodriguez, N.: A numerical perspective on traveling wave solutions in a system for rioting activity. Appl. Math. Comput. 364, 124646 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean government (MSIT) (Nos. NRF-2017R1E1A1A03070105 and NRF-2019R1A5A1028324)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Ju Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.W., Hwang, H.J. & Son, H. Traveling Wave Solutions of Partial Differential Equations Via Neural Networks. J Sci Comput 89, 21 (2021). https://doi.org/10.1007/s10915-021-01621-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01621-w

Keywords

Mathematics Subject Classification

Navigation