Skip to main content
Log in

Quasi-Toeplitz Trigonometric Transform Splitting Methods for Spatial Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The random walk model describing the super-diffusion competition phenomenon of particles can derive the spatial fractional diffusion equation. For irregular diffusion and super-diffusion phenomena, the use of such equation can obtain more accurate and realistic results, so it has a wide application background in practice. The implicit finite-difference method derived from the shifted Grünwald scheme is used to discretize the spatial fractional diffusion equation. The coefficient matrix of discrete system is in the form of the sum of a diagonal matrix and a Toeplitz matrix. In this paper, a preconditioner is constructed, which transforms the coefficient matrix into the form of an identity matrix plus a diagonal matrix multiplied by Toeplitz matrix. On this basis, a new quasi-Toeplitz trigonometric transform splitting iteration format (abbreviated as QTTTS method) is proposed. We theoretically verify the unconditional convergence of the new method, and obtain the effective optimal form of the iteration parameter. Finally, numerical simulation experiments also demonstrate the accurateness and efficiency of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theorey and Applicatons of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  3. Shekarforoush, H., Zerubia, J., Berthod, M., et al.: Denoising by extracting fractional order singularities. International Conference on Acoustics Speech and Signal Processing, 2889–2892 (1998)

  4. Mathieu, B., Melchior, P., Oustaloup, A., et al.: Fractional differentiation for edge detection. Signal Process. 83(11), 2421–2432 (2003)

    Article  Google Scholar 

  5. Pires, E.J., Machado, J.A., Oliveira, P.B., et al.: Fractional order dynamics in a GA planner. Signal Process. 83(11), 2377–2386 (2003)

    Article  Google Scholar 

  6. Deng, W.-H., Li, C.-P.: Synchronization of chaotic fractional Chen system. J. Phys. Soc. Jpn. 74(6), 1645–1648 (2005)

    Article  Google Scholar 

  7. Wu, X.-J., Li, J., Chen, G.-R., et al.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst.-Eng. Appl. Math. 345(4), 392–401 (2008)

    Article  Google Scholar 

  8. Oldham, K.B.: Semiintegral electroanalysis. Analog implementation. Anal. Chem. 45(1), 39–47 (1973)

    Article  Google Scholar 

  9. Darling, R.M., Newman, J.: On the short-time behavior of porous intercalation electrodes. J. Electrochem. Soc. 144(9), 3057–3063 (1997)

    Article  Google Scholar 

  10. Brenke, W.C.: An application of Abel’s integral equation. Am. Math. Monthly 29(2), 58–60 (1992)

    Article  MathSciNet  Google Scholar 

  11. Mainardi, F., Luchko, Y., Pagnini, G., et al.: The fundamental solution of the space-time fractional diffusion equation. arXiv: Statistical Mechanics (2007)

  12. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  13. Zhuang, P.-H., Liu, F.-W., Anh, V., et al.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46(2), 1079–1095 (2008)

    Article  MathSciNet  Google Scholar 

  14. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31(5), 1248–1255 (2007)

    Article  MathSciNet  Google Scholar 

  15. Liu, F.-W., Zhuang, P.-H., Burrage, K., et al.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ng, M.K.: Circulant and skew-circulant splitting methods for Toeplitz systems. J. Comput. Appl. Math. 159(1), 101–108 (2003)

    Article  MathSciNet  Google Scholar 

  17. Akhondi, N., Toutounian, F.: Accelerated circulant and skew circulant splitting methods for Hermitian positive definite Toeplitz systems. Adv. Numer. Anal. 1–17 (2012)

  18. Liu, Z., Wu, N., Qin, X., et al.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ng, M.K., Pan, J.-Y.: Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J. Sci. Comput. 32(3), 1442–1464 (2010)

    Article  MathSciNet  Google Scholar 

  20. Wang, C.-J., Li, H.-Y., Zhao, D., et al.: Preconditioning Toeplitz-plus-diagonal linear systems using the Sherman-Morrison-Woodbury formula. J. Comput. Appl. Math. 309, 312–319 (2017)

    Article  MathSciNet  Google Scholar 

  21. Bai, Z.-Z., Lu, K.-Y., Pan, J.-Y.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24(4), 2093 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lu, K.-Y.: Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations. Comput. Appl. Math. 37(4), 4196–4218 (2018)

    Article  MathSciNet  Google Scholar 

  23. Dai, P.-F., Wu, Q.-B., Zhu, S.-F., et al.: Quasi-Toeplitz splitting iteration methods for unsteady space-ractional diffusion equations. Numer. Methods Partial Differ. Equ. 35(2), 699–715 (2019)

    Article  Google Scholar 

  24. Shao, X.-H., Zhang, Z.-D., Shen, H.-L.: A generalization of trigonometric transform splitting methods for spatial fractional diffusion equations. Comput. Math. Appl. 79(6), 1845–1856 (2020)

    Article  MathSciNet  Google Scholar 

  25. Chan, R.H., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

    Book  Google Scholar 

  26. Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    MATH  Google Scholar 

  27. Varga, R.S.: Geršgorin and His Circles, Springer Series in Computational Mathematics (2004)

  28. Heinig, G., Rost, K.: Representations of Toeplitz-plus-Hankel matrices using trigonometric transformations with application to fast matrix-vector multiplication. Linear Algebra Appl. 275, 225–248 (1998)

    Article  MathSciNet  Google Scholar 

  29. Huckle, T.: Iterative methods for ill-conditioned Toeplitz matrices. Calcolo 33(3), 177–190 (1996)

    Article  MathSciNet  Google Scholar 

  30. Bai, Z.-Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154(1), 195–214 (2003)

    Article  MathSciNet  Google Scholar 

  31. Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2002)

    Article  MathSciNet  Google Scholar 

  32. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  33. Deng, W.-H., Li, B.-Y., Tian, W.-Y., et al.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018)

    Article  MathSciNet  Google Scholar 

  34. Bai, Z.-Z., Lu, K.-Y.: Fast matrix splitting preconditioners for higher dimensional spatial fractional diffusion equations. J. Comput. Phys. 404, 109117 (2020)

    Article  MathSciNet  Google Scholar 

  35. Kelly, J.F., Sankaranarayanan, H., Meerschaert, M.M.: Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376, 1089–1107 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Project supported by the Natural Science Foundation of Liaoning Province (No. 20170540323), Central University Basic Scientific Research Business Expenses Special Funds (N2005013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Shao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, XH., Li, YH. & Shen, HL. Quasi-Toeplitz Trigonometric Transform Splitting Methods for Spatial Fractional Diffusion Equations. J Sci Comput 89, 10 (2021). https://doi.org/10.1007/s10915-021-01610-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01610-z

Keywords

Navigation