Skip to main content
Log in

Second-Order Convergence of the Linearly Extrapolated Crank–Nicolson Method for the Navier–Stokes Equations with \(\mathbf{H^1}\) Initial Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article concerns the numerical approximation of the two-dimensional nonstationary Navier–Stokes equations with \(H^1\) initial data. By utilizing special locally refined temporal stepsizes, we prove that the linearly extrapolated Crank–Nicolson scheme, with the usual stabilized Taylor–Hood finite element method in space, can achieve second-order convergence in time and space. Numerical examples are provided to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  3. Ammi, A.A.O., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 68(2), 189–213 (1994)

    Article  MathSciNet  Google Scholar 

  4. Baker, G.A., Dougalis, V., Karakashian, O.: On a higher order accurate, fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39, 339–375 (1982)

    Article  MathSciNet  Google Scholar 

  5. Emmrich, E.: Error of the two-step BDF for the incompressible Navier-Stokes problem. ESAIM: M2AN 38(5), 757–764 (2004)

    Article  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Approximations of the Navier-Stokes Equations. Springer-Verlag, New York (1979).. (Lecture Notes in Mathematics)

    Book  Google Scholar 

  7. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  8. Guo, Y., He, Y.: Unconditional convergence and optimal \(L^2\) error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier-Stokes equations. Comput. Math. Appl. 75, 134–152 (2017)

    Article  Google Scholar 

  9. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Math. Comp. 77(264), 2097–2124 (2008)

    Article  MathSciNet  Google Scholar 

  10. He, Y.: The Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations with nonsmooth initial data. Numer. Methods PDEs 28(1), 155–187 (2011)

    Article  MathSciNet  Google Scholar 

  11. He, Y., Li, K.: Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations. Numer. Math. 79(1), 77–106 (1998)

    Article  MathSciNet  Google Scholar 

  12. He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007)

    Article  MathSciNet  Google Scholar 

  13. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  14. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25, 489–512 (1988)

    Article  MathSciNet  Google Scholar 

  15. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  16. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    Article  MathSciNet  Google Scholar 

  18. Liu, W., Hou, Y., Xue, D.: Numerical analysis of a 4th-order time parallel algorithm for the time-dependent Navier-Stokes equations. Appl. Numer. Math. 150, 361–383 (2020)

    Article  MathSciNet  Google Scholar 

  19. Notsu, H., Tabata, M.: Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equations. ESAIM: M2AN 50(2), 361–380 (2016)

    Article  MathSciNet  Google Scholar 

  20. Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MathSciNet  Google Scholar 

  21. Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes. Math. Comp. 65(215), 1039–1065 (1996)

    Article  MathSciNet  Google Scholar 

  22. Sonner, F., Richter, T.: Second order pressure estimates for the Crank-Nicolson discretization of the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 58(1), 375–409 (2020)

    Article  MathSciNet  Google Scholar 

  23. Tang, Q., Huang, Y.: Stability and convergence analysis of a Crank-Nicolson leap-frog scheme for the unsteady incompressible Navier-Stokes equations. Appl. Numer. Math. 124, 110–129 (2018)

    Article  MathSciNet  Google Scholar 

  24. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, New York (1977)

    MATH  Google Scholar 

  25. Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer. 18(2), 175–182 (1984)

    Article  MathSciNet  Google Scholar 

  26. Wang, K., He, Y.: Convergence analysis for a higher order scheme for the time-dependent Navier-Stokes equations. Appl. Math. Comput. 218(17), 8269–8278 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Wang, K., Lv, C.: Third-order temporal discrete scheme for the non-stationary Navier-Stokes equations. Int. J. Comput. Math. 89(15), 1996–2018 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of Buyang Li and Shu Ma were partially funded by the internal grant ZZKQ at The Hong Kong Polytechnic University. The research of Na Wang was partially funded by the National Natural Science Foundation of China (NSFC Grant U1930402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ma, S. & Wang, N. Second-Order Convergence of the Linearly Extrapolated Crank–Nicolson Method for the Navier–Stokes Equations with \(\mathbf{H^1}\) Initial Data. J Sci Comput 88, 70 (2021). https://doi.org/10.1007/s10915-021-01588-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01588-8

Keywords

Mathematics Subject Classification

Navigation