Skip to main content
Log in

Improved Error Bounds of the Strang Splitting Method for the Highly Oscillatory Fractional Nonlinear Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We begin with rigorous error estimates of the Strang splitting method for the highly oscillatory fractional nonlinear equation involving a small parameter \(\varepsilon \in (0, 1]\), which propagates waves with wavelength at \(O(\varepsilon ^2)\) in time. In view of the inherent oscillatory nature, the \(\varepsilon \)-scalability of the Strang splitting method is optimal as suggested by the Shannon’s sampling theorem. Surprisingly, we find out that the Strang splitting method would yield an improved error bound for the one dimensional (1D) fractional nonlinear Schrödinger equation (NLSE) provided that the time step \(\tau \) is chosen as an integer fraction of the period of the principal linear part. Finally, numerical examples are reported to validate our error estimates and various applications are shown to illustrate the difference between the fractional NLSE and classical NLSE as well as the capability of the Strang splitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ambrosio, V.: Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator. J. Math. Phys. 57, 051502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoine, X., Tang, Q., Zhang, J.: On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross–Pitaevskii equations. Int. J. Comput. Math. 95, 1423–1443 (2018)

    Article  MathSciNet  Google Scholar 

  4. Antoine, X., Tang, Q., Zhang, Y.: On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross–Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aruna, K., Kanth, A.R.: Approximate solutions of non-linear fractional Schrödinger equation via differential transform method and modified differential transform method. Natl. Acad. Sci. Lett. 36, 201–213 (2013)

    Article  Google Scholar 

  6. Bao, W., Cai, Y., Jia, X., Yin, J.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math. 59, 1461–1494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Cai, Y., Yin, J.: Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime. Math. Comput. 89, 2141–2173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Dong, X.: Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W., Feng, Y., Su, C.: Uniform error bounds of a time-splitting spectral method for the long-time dynamics of the nonlinear Klein–Gordon equation with weak nonlinearity. arXiv:2001.10868

  10. Bao, W., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187, 318–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  13. Ben-Artzi, M., Nemirovsky, J.: Remarks on relativistic Schrödinger operators and their extensions. Ann. Inst. H. Poincaré Phys. Théorique 67, 29–39 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Borgna, J.P., Rial, D.F.: Existence of ground states for a one dimensional relativistic Schrödinger equations. J. Math. Phys. 53, 062301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math 15, 519–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chartier, P., Méhats, F., Thalhammer, M., Zhang, Y.: Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85, 2863–2885 (2016)

    Article  MATH  Google Scholar 

  17. Cho, Y., Hajaiej, H., Hwang, G., Ozawa, T.: On the orbital stability of fractional Schrödinger equations. Commun. Pure Appl. Anal. 13, 1267–1282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Driscoll, T.A.: A composite Runge–Kutta method for the spectral solution of semilinear PDEs. J. Comput. Phys. 182, 357–367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duo, S., Zhang, Y.: Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 71, 2257–2271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujiwara, K., Ozawa, T.: Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearity. Int. J. Math. Anal. 9, 2599–2610 (2015)

    Article  Google Scholar 

  21. Gauckler, L.: Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31, 396–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herr, S., Tesfahun, A.: Small data scattering for semi-relativistic equations with Hartree type nonlinearity. J. Differ. Equ. 259, 5510–5532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, Y., Kallianpur, G.: Schrödinger equations with fractional Laplacians. Appl. Math. Optim. 42, 281–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 62, 1510–1521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67, 479–499 (1998)

    Article  MATH  Google Scholar 

  27. Kirkpatrick, K., Lenzmann, E., Staffilan, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317, 563–591 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klein, C., Sparber, C., Markowich, P.A.: Numerical study of fractional nonlinear Schrödinger equations. Proc. R. Soc. A 470, 20140364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, X., Wen, J., Li, D.: Mass- and energy-conserving difference schemes for nonlinear fractional Schrödinger equations. Appl. Math. Lett. 111, 106686 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)

    Article  Google Scholar 

  33. Lubich, C.: On splitting methods for Schrödinger–Possion and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  34. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  35. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equation in \({\mathbb{R}}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  37. Sulem, P.L., Sulem, C., Patera, A.: Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation. Commun. Pure Appl. Math. 37, 755–778 (1984)

    Article  MATH  Google Scholar 

  38. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46, 2022–2038 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhai, S., Wang, D., Weng, Z., Zhao, X.: Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput. 81, 965–989 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y.Q., Liu, X., Belić, M.R., Zhong, W.P., Zhang, Y.P., Xiao, M.: Propagation dynamics of a light beam in fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to specially thank Professor Weizhu Bao for his valuable suggestions and comments. This work was supported by the Ministry of Education of Singapore Grant R-146-000-290-114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Feng.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y. Improved Error Bounds of the Strang Splitting Method for the Highly Oscillatory Fractional Nonlinear Schrödinger Equation. J Sci Comput 88, 48 (2021). https://doi.org/10.1007/s10915-021-01558-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01558-0

Keywords

Mathematics Subject Classification

Navigation