Skip to main content
Log in

A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to analyze the influence of small edges in the computation of the spectrum of the Steklov eigenvalue problem by a lowest order virtual element method. Under weaker assumptions on the polygonal meshes, which can permit arbitrarily small edges with respect to the element diameter, we show that the scheme provides a correct approximation of the spectrum and prove optimal error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report some numerical tests supporting the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adak, D., Natarajan, S.: Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes. Comput. Math. Appl. 79, 2856–2871 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54, 36–56 (2016)

    MATH  Google Scholar 

  3. Armentano, M.G.: The effect of reduced integration in the Steklov eigenvalue problem. ESAIM Math. Model. Numer. Anal. 38, 27–36 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  6. Bermúdez, A., Rodríguez, R., Santamarina, D.: Finite element computation of sloshing modes in containers with elastic baffle plates. Internat. J. Numer. Methods Engrg. 56, 447–467 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74, 1110–1122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, Springer, MS&A, 11, 2014

  10. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg. 295, 327–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27, 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51, 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga, L., Vacca, G.: Sharper error estimates for virtual elements and a bubble-enriched version, arXiv:2005.12009 [math.NA]

  14. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 311, 18–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bramble, J.H., Osborn, J.E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 387–408. Academic Press, New York (1972)

    Chapter  Google Scholar 

  16. Brenner, S.C., Çeşmelioǧlu, A., Cui, J., Sung, L.Y.: A nonconforming finite element method for an acoustic fluid-structure interaction problem. Comput. Methods Appl. Math. 18, 383–406 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brenner, S.C., Scott, R.L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  18. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Canavati, J., Minsoni, A.: A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69, 540–558 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24, 2009–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137, 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Čertík, O., Gardini, F., Manzini, G., Mascotto, L., Vacca, G.: The p- and hp-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl. 79, 2035–2056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Choun, Y.S., Yun, C.B.: Sloshing characteristics in rectangular tanks with a submerged block. Comput. Struct. 61, 401–413 (1996)

    Article  Google Scholar 

  25. Dello Russo, A., Alonso, A.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62, 4100–4117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Di Pietro, D., Droniou, J.: The Hybrid High-Order Method for Polytopal Meshes - Design, Analysis and Applications, Springer, MS&A, vol. 19, 2020

  27. Garau, E.M., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31, 914–946 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53, 749–774 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38, 2026–2054 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  31. Grisvard, P.: Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  33. Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math. 58, 129–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, J. L., Magenes, E.: Problèmes Aux Limites Non Homogènes et Applications Vol. I, Travaux et Recherches Mathématiques, Vol. 17 (Dunod, 1968)

  35. Liu, J., Sun, J., Turner, T.: Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79, 1814–1831 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mascotto, L., Perugia, I., Pichler, A.: Non-conforming harmonic virtual element method: \(h\)- and \(p\)- versions. J. Sci. Comput. 77, 1874–1908 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meddahi, S., Mora, D., Rodríguez, R.: Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem. Comput. Math. Appl. 68, 1733–1750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meng, J., Mei, L.: A linear virtual element method for the Kirchhoff plate buckling problem. Appl. Math. Lett. 103, 106188 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40, 322–357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25, 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual elements method for the Steklov eigenvalue problem. Comp. Math. Appl. 74, 2172–2190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Engrg. 360, 112687 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perugia, I., Pietra, P., Russo, A.: A plane wave virtual element method for the Helmholtz problem. ESAIM Math. Model. Numer. Anal. 50, 783–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rjasanow, S., Weißer, S.: Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50, 2357–2378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Internat. J. Numer. Methods Engrg. 61, 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59, 2388–2401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, Y., Zhang, Y., Bi, H.: Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46(81), 25 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wriggers, P., Rust, W.T., Reddy, B.D.: A virtual element method for contact. Comput. Mech. 58, 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

FL was partially supported by the National Agency for Research and Development, ANID-Chile through FONDECYT Postdoctorado project 3190204 and FONDECYT project 11200529. DM was partially supported by the National Agency for Research and Development, ANID-Chile through FONDECYT project 1180913 and by project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. GR was partially supported by the National Agency for Research and Development, ANID-Chile through FONDECYT project 11170534. IV was partially supported by project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepe, F., Mora, D., Rivera, G. et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges. J Sci Comput 88, 44 (2021). https://doi.org/10.1007/s10915-021-01555-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01555-3

Keywords

Mathematics Subject Classification

Navigation