Skip to main content
Log in

Fast Huygens Sweeping Methods for a Class of Nonlocal Schrödinger Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present efficient numerical methods for solving a class of nonlinear Schrödinger equations involving a nonlocal potential. Such a nonlocal potential is governed by Gaussian convolution of the intensity modeling nonlocal mutual interactions among particles. The method extends the Fast Huygens Sweeping Method (FHSM) that we developed in Leung et al. (Methods Appl Anal 21(1):31–66, 2014) for the linear Schrödinger equation in the semi-classical regime to the nonlinear case with nonlocal potentials. To apply the methodology of FHSM effectively, we propose two schemes by using the Lie’s and the Strang’s operator splitting, respectively, so that one can handle the nonlinear nonlocal interaction term using the fast Fourier transform. The resulting algorithm can then enjoy the same computational complexity as in the linear case. Numerical examples demonstrate that the two operator splitting schemes achieve the expected first-order and second-order accuracy, respectively. We will also give one-, two- and three-dimensional examples to demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abe, S., Ogura, A.: Solitary waves and their critical behavior in a nonlinear nonlocal medium with power-law response. Phys. Rev. E 57(5), 6066 (1998)

    Article  Google Scholar 

  2. Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short Wave Diffraction Problems. Nauka, Moscow (1972).. ((in Russian))

    Google Scholar 

  3. Bang, O., Krolikowski, W., Wyller, J., Rasmussen, J.J.: Collapse arrest and soliton stabilization in nonlocal nonlinear media. Phys. Rev. E 66(4), 046619 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)

    Article  MathSciNet  Google Scholar 

  5. Berloff, N.G., Roberts, P.H.: Motions in a Bose condensate: VI. Vortices in a nonlocal model. J. Phys. A Math. Gen. 32(30), 5611 (1999)

    Article  MathSciNet  Google Scholar 

  6. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463 (1999)

    Article  Google Scholar 

  7. Davydova, T.A., Fishchuk, A.I.: Upper hybrid nonlinear wave structures. Ukr. J. Phys. 40, 487 (1995)

    Google Scholar 

  8. Glowinski, R.: Finite Element Methods for Incompressible Viscous Flow, in Handbook of Numerical Analysis, vol. 9. North-Holland, Amsterdam (2003)

    MATH  Google Scholar 

  9. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  10. Glowinski, R., Leung, S., Qian, J.: A simple explicit operator-splitting method for effective Hamiltonians. SIAM J. Sci. Comput. 40(1), A484–A503 (2018)

    Article  MathSciNet  Google Scholar 

  11. Glowinski, R., Osher, S., Yin, W.: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Berlin (2016)

    Book  Google Scholar 

  12. Goral, K., Rzazewski, K., Pfau, T.: Bose–Einstein condensation with magnetic dipole–dipole forces. Phys. Rev. A 61(5), 051601 (2000)

    Article  Google Scholar 

  13. Haas, F., Eliasson, B.: Time-dependent variational approach for Bose–Einstein condensates with nonlocal interaction. J. Phys. B: At. Mol. Opt. Phys. 51, 175302 (2018)

    Article  Google Scholar 

  14. Heller, E.J.: Cellular dynamics: a new semiclassical approach to time-dependent quantum mechanics. J. Chem. Phys. 94, 2723–2729 (1991)

    Article  Google Scholar 

  15. Heller, E.J.: Guided Gaussian wave packets. Acc. Chem. Res. 39, 127–134 (2006)

    Article  Google Scholar 

  16. Hill, N.R.: Gaussian beam migration. Geophysics 55, 1416–1428 (1990)

    Article  Google Scholar 

  17. Klein, C., Roidot, K.: Numerical study of the semiclassical limit of the Davey–Stewartson II equations. Nonlinearity 27(9), 2177 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kluk, E., Herman, M.F., Davis, H.L.: Comparison of the propagation of semiclassical Frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator. J. Chem. Phys. 84, 326–334 (1986)

    Article  Google Scholar 

  19. Kwan, W., Leung, S., Wang, X.P., Qian, J.: A fast Huygens sweeping method for capturing paraxial multi-color optical self-focusing in nematic liquid crystals. J. Comput. Phys. 348, 108–138 (2017)

    Article  MathSciNet  Google Scholar 

  20. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228, 2951–2977 (2009)

    Article  MathSciNet  Google Scholar 

  21. Leung, S., Qian, J.: The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 8888–8917 (2010)

    Article  MathSciNet  Google Scholar 

  22. Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high frequency wave propagation. Geophysics 72, SM61–SM76 (2007)

    Article  Google Scholar 

  23. Leung, S., Qian, J., Serna, S.: Fast Huygens sweeping methods for Schrödinger equations in the semi-classical regime. Methods Appl. Anal. 21(1), 31–66 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Leung, S., Zhao, H.K.: Gaussian beam summation for diffraction in inhomogeneous media based on the grid based particle method. Commun. Comput. Phys. 8, 758–796 (2010)

    Article  MathSciNet  Google Scholar 

  25. Motamed, M., Runborg, O.: Taylor expansion and discretization errors in Gaussian beam superposition. Wave Motion 47, 421–439 (2010)

    Article  MathSciNet  Google Scholar 

  26. Nasr, A.H.: A study of one-dimensional Schrödinger equation with nonlocal potential. SIAM J. Math. Anal. 15(3), 459–467 (1984)

    Article  MathSciNet  Google Scholar 

  27. Perez-Garcia, V.M., Konotop, V.V., Garcia-Ripoll, J.J.: Dynamics of quasicollapse in nonlinear Schrödinger systems with nonlocal interactions. Phys. Rev. E 62(3), 4300 (2000)

    Article  Google Scholar 

  28. Perez-Garcia, V.M., Michinel, H., Cirac, J.I., Lewenstein, M., Zoller, P.: Dynamics of Bose–Einstein condensates: variational solutions of the Gross–Pitaevskii equations. Phys. Rev. A 56(2), 1424 (1997)

    Article  Google Scholar 

  29. Qian, J., Ying, L.: Fast Gaussian wavepacket transforms and gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 7848–7873 (2010)

    Article  MathSciNet  Google Scholar 

  30. Qian, J., Ying, L.: Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation. SIAM J. Multi. Model. Simul. 8, 1803–1837 (2010)

    Article  MathSciNet  Google Scholar 

  31. Rawitscher, G.H.: Solution of the Schrödinger equation containing a Perey–Buck nonlocality. Nucl. Phys. A 886, 1–16 (2012)

    Article  Google Scholar 

  32. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    Book  Google Scholar 

  33. Shchesnovich, Valery S., Kraenkel, Roberto A.: Vortices in nonlocal Gross–Pitaevskii equation. J. Phys. A: Math. Gen. 37(26), 6633 (2004)

    Article  MathSciNet  Google Scholar 

  34. Tanushev, N., Engquist, B., Tsai, R.: Gaussian beam decomposition of high frequency wave fields. J. Comput. Phys. 228, 8856–8871 (2009)

    Article  MathSciNet  Google Scholar 

  35. Tanushev, N., Qian, J., Ralston, J.: Mountain waves and gaussian beams. SIAM J. Multi. Model. Simul. 6, 688–709 (2007)

    Article  MathSciNet  Google Scholar 

  36. Theodorakis, S., Athanasiou, S.: Variational model for the delayed collapse of Bose–Einstein condensates. Phys. Rev. E. 102, 052205 (2020)

    Article  MathSciNet  Google Scholar 

  37. Turitsyn, S.K.: Spatial dispersion of nonlinearity and stability of multidimensional solitons. Theor. Math. Phys. 64(2), 797–801 (1985)

    Article  Google Scholar 

  38. Weideman, J.A.C., Herbst, B.M.: Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23, 485–507 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Leung was supported in part by the Hong Kong RGC Grant 16302819. Qian is partially supported by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingyu Leung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, K., Leung, S. & Qian, J. Fast Huygens Sweeping Methods for a Class of Nonlocal Schrödinger Equations. J Sci Comput 88, 54 (2021). https://doi.org/10.1007/s10915-021-01549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01549-1

Keywords

Navigation