Skip to main content
Log in

A Method to Solve Hamilton–Jacobi Type Equation on Unstructured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new method is developed to approximate a first-order Hamilton–Jacobi equation. The constant motion of an interface in the normal direction is of interest. The interface is captured with the help of a “Level-Set” function approximated through a finite-volume Godunov-type scheme. Contrarily to most computational approaches that consider smooth Level-Set functions, the present one considers sharp “Level-Set”, the numerical diffusion being controlled with the help of the Overbee limiter (Chiapolino et al. in J Comput Phys 340:389–417, 2017). The method requires gradient computation that is addressed through the least squares approximation. Multidimensional results on fixed unstructured meshes are provided and checked against analytical solutions. Geometrical properties such as interfacial area and volume computation are addressed as well. Results show excellent agreement with the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and materials

All data related to the corresponding computational results are given in the manuscript.

References

  1. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sethian, J.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sethian, J.: Numerical algorithms for propagating interfaces: Hamilton–Jacobi equations and conservation laws. J. Differ. Geom. 31(1), 131–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  6. Morgan, N., Waltz, J.: 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement. J. Comput. Phys. 336, 492–512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wei, R., Bao, F., Liu, Y., Hui, W.: Robust three-dimensional level-set method for evolving fronts on complex unstructured meshes. Math. Problems Eng. 2018, 2730829 (2018). https://doi.org/10.1155/2018/2730829

  8. Saurel, R., Le Martelot, S., Tosello, R., Lapébie, E.: Symmetric model of compressible granular mixtures with permeable interfaces. Phys. Fluids 26(12), 123304 (2014)

    Article  Google Scholar 

  9. Saurel, R., Fraysse, F., Furfaro, D., Lapébie, E.: Multiscale multiphase modeling of detonations in condensed energetic materials. Comput. Fluids 159, 95–111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer, Berlin (2003)

    MATH  Google Scholar 

  11. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  13. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow II. J. Comput. Phys. 225(1), 785–807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shukla, R., Pantano, C., Freund, J.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229(19), 7411–7439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carmouze, Q., Fraysse, F., Saurel, R., Nkonga, B.: Coupling rigid bodies motion with single phase and two-phase compressible flows and unstructured meshes. J. Comput. Phys. 375, 1314–1338 (2018)

    Article  MathSciNet  Google Scholar 

  20. Saurel, R., Pantano, C.: Diffuse interfaces and capturing methods in compressible two-phase flows. Annu. Rev. Fluid Mech. 50, 105–130 (2018)

    Article  MATH  Google Scholar 

  21. Chiapolino, A., Saurel, R., Nkonga, B.: Sharpening diffuse interfaces with compressible fluids on unstructured meshes. J. Comput. Phys. 340, 389–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dalla, E., Hilpert, M., Miller, C.: Computation of the interfacial area for two-fluid porous medium systems. J. Contam. Hydrol. 56(1–2), 25–48 (2002)

    Article  Google Scholar 

  23. Dauch, F., Ribereau, D.: A software for SRM grain design and internal ballistics evaluation, PIBAL. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002, p. 4299 (2002)

  24. Willcox, M., Brewster, M., Tang, K., Stewart, D.: Solid propellant grain design and burnback simulation using a minimum distance function. J. Propul. Power 23(2), 465–475 (2007)

    Article  Google Scholar 

  25. Cavallini, E.: Modeling and numerical simulation of solid rocket motors internal ballistics. Ph.D. thesis, Sapienza Università di Roma (2010)

  26. Sullwald, W.: Grain regression analysis. Ph.D. thesis, University of Stellenbosch (2014)

  27. Gueyffier, D., Roux, F., Fabignon, Y., Chaineray, G., Lupoglazoff, N., Vuillot, F., Hijlkema, J., Alauzet, F.: Accurate computation of grain burning coupled with flow simulation in rocket chamber. J. Propul. Power 31(6), 1761–1776 (2015)

    Article  Google Scholar 

  28. Engquist, B., Tornberg, A., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smereka, P.: The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211(1), 77–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226(2), 1432–1443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Godunov, S.: A finite difference scheme for numerical computation of the discontinuous wave solutions of equations of fluid dynamics. Math. Sb. 47, 271–306 (1959)

    Google Scholar 

  32. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  33. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)

    Google Scholar 

  34. Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Davis, S.: Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 9(3), 445–473 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: Proceedings of the AIAA 27th Aerospace Science Meeting. Reno, Nevada (1989)

  37. Sweby, P., Baines, M.: Convergence of Roe’s scheme for the general non-linear scalar wave equation. University of Reading, Department of Mathematics (1981)

  38. Roe, P.: Some contributions to the modelling of discontinuous flows. Large-Scale Comput. Fluid Mech. 1985, 163–193 (1985)

    MathSciNet  Google Scholar 

  39. Shyue, K., Xiao, F.: An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach. J. Comput. Phys. 268, 326–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ii, S., Xie, B., Xiao, F.: An interface capturing method with a continuous function: the THINC method on unstructured triangular and tetrahedral meshes. J. Comput. Phys. 259, 260–269 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sweby, P.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  43. Harten, A.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  45. Tadmor, E.: Convenient total variation diminishing conditions for nonlinear difference schemes. SIAM J. Numer. Anal. 25(5), 1002–1014 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Furfaro, D., Saurel, R., David, L., Beauchamp, F.: Towards sodium combustion modeling with liquid water. J. Comput. Phys. 403, 109060 (2020)

    Article  MathSciNet  Google Scholar 

  47. Drew, D., Passman, S.: Theory of Multicomponent Fluids, vol. 135. Springer, Berlin (2006)

    MATH  Google Scholar 

  48. Xiao, Z., He, W., Xu, F.: Emulation and calculation of the burning surface of 3D grains of partially cut multi-perforated stick propellant using the level set method. Propellants Explos. Pyrotech. 41(1), 148–153 (2016)

    Article  Google Scholar 

  49. Horst, J., Albert, W., Robbins, F.: Programmed-splitting solid propellant grain for improved ballistic performance of guns. US Patent 4,581,998 (1986)

  50. Stals, J.: Form-functions for multi-component propellant charges including inhibited grains and sliver burn. Technical report, Materials Research Labs Ascot Vale (Australia) (1975)

  51. Krier, H., Summerfield, M.: Interior ballistics of guns. In: Progress in Astronautics and Aeronautics, vol. 66 (1979)

  52. White, K.: Effect of propellant grain dimensions on progressivity. Technical report, Army Research Lab Aberdeen Proving Ground MD (1997)

  53. Carlucci, D., Jacobson, S.: Ballistics: Theory and Design of Guns and Ammunition. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  54. Geuzaine, C., Remacle, J., Dular, P.: Gmsh: a three-dimensional finite element mesh generator. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Jeaniffer Vides for numerous helpful discussions that definitely helped to improve the quality of this work. This work has been partly funded by Eurenco that is gratefully acknowledged.

Funding

Part of this work has been funded by Eurenco that is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Chiapolino.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Code availability

No, closed-source software.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiapolino, A., Fraysse, F. & Saurel, R. A Method to Solve Hamilton–Jacobi Type Equation on Unstructured Meshes. J Sci Comput 88, 7 (2021). https://doi.org/10.1007/s10915-021-01517-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01517-9

Keywords

Navigation