Skip to main content
Log in

A MOOD-MUSCL Hybrid Formulation for the Non-conservative Shallow-Water System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The stability of the high-order finite volume method for hyperbolic systems is based on non-linear procedures that prevent the creation of non-physical oscillations. Traditional techniques use the a priori paradigm where the procedure is carried out with the current time step solution. The a posteriori paradigm lies on an advanced in time candidate solution and a posterior evaluation of its stability, followed by a cure when necessary. To compare the two strategies, we propose a detailed study using the non-conservative shallow-water equations as a prototype, where both techniques are applied together in the framework of second-order linear reconstruction for the sake of simplicity. Then, a hybrid version combining the most positive aspects of both methods is proposed and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M., Aftosmis, M.J., Murman S.M.: Analysis of slope limiters on irregular grids. In: Proceedings of the 43rd AIAA Aerospace Science Meeting, 10–13 January 2005

  4. Berthon, C., Desveaux, V.: An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite Vol. 11, 1–39 (2014)

    MathSciNet  Google Scholar 

  5. Blachère, F., Turpault, R.: An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction. Comput. Method Appl. Mech. 317, 836–867 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boscheri, W., Dumbser, M.: Arbitrary-lagrangian-eulerian discontinuous galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 479, 449–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscheri, W., Dumbser, M., Loubère, R., Maire, P.H.: A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics. J. Comput. Phys. 358, 103–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscheri, W., Loubère, R., Dumbser, D.: Direct arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 292, 56–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braeunig, J.-P., Loubère, R., Motte, R., Peybernes, M., Poncet, R.: A posteriori limiting for 2D Lagrange plus Remap schemes solving the hydrodynamics system of equations. Comput. Fluids 169, 249–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrier, G.F., Wu, T.T., Yeh, H.: Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 79–99 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clain, S., Reis, C., Costa, R., Figueiredo, J., Baptista, M.A., Miranda, J.M.: Second-order finite volume with hydrostatic reconstruction for tsunami simulation. J. Adv. Model. Earth Syst. 8(4), 1691–1713 (2016)

    Article  Google Scholar 

  12. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for hyperbolic systems: multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clain, S., Figueiredo, J.: The MOOD method for the non-conservative shallow-water system. Comput. Fluids 145, 99–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clain, S., Loubère, R., Machado, G.J.: A posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations. Adv. Comput. Math. 44, 571–607 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T.-N.-T., James, F., Cordier, S.: SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods Fluids 72, 269–300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deligant, M., Nogueira, X., Khelladi, S., Sauret, E., Reding, B.: Toward a high resolution real gas finite volume solver with multi optimal order detection. In: 5th International Seminar on ORC Power Systems, September 9–11, Athens, Greece (2019)

  17. Deng, X., Xie, B., Loubère, R., Shimizu, Y., Xiao, F.: Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts. Comput. Fluids 171, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013)

    Article  MATH  Google Scholar 

  20. Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 199, 319–163 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farmakis, P.S., Tsoutsanis, P., Nogueira, X.: WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach. Comput. Methods Appl. Mech. Eng. 363, 112–921 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernández-Fidalgo, J., Nogueira, X., Ramírez, L., Colominas, I.: An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows. Comput. Methods Appl. Mech. Eng. 335, 91–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Figueiredo, J., Clain, S.: On the solution of the slope beach problem in the context of shallow-water code benchmarking: why non-linearization of the initial waveforms is essential. Adv. Water. Res. 15, 1037 (2020)

    Google Scholar 

  25. Gaburro, E., Boscheri, W., Chiocchetti, S., Klingenberg, C., Springel, V., Dumbser, M.: High order direct arbitrary-Lagrangian–Eulerian schemes on moving Voronoi meshes with topology changes. J. Comput. Phys. 407, 109–167 (2020)

    Article  MathSciNet  Google Scholar 

  26. Giri, P., Qiu, J.: A high-order Runge–Kutta discontinuous Galerkin method with a subcell limiter on adaptive unstructured grids for two-dimensional compressible inviscid flows. Int. J. Numer. Methods Fluids 91, 367–394 (2019)

    Article  MathSciNet  Google Scholar 

  27. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Mat. Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  28. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, Z.H., Yan, C., Yu, J.: Efficient methods with higher order interpolation and MOOD strategy for compressible turbulence simulations. J. Comput. Phys. 371, 528–550 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kitamura, K., Hashimoto, A.: Simple a posteriori slope limiter (Post Limiter) for high resolution and efficient flow computations. J. Comput. Phys. 341, 313–340 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolgan, V.P.: Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics (in Russian). Trans. Cent. Aerohydr. Inst. 3, 68–77 (1972)

    Google Scholar 

  32. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Loubère, R., Dumbser, M., Diot, S.: A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws. Commun. Comput. Phys. 16(3), 718–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maurizio, T., Dumbser, M.: A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallow-water equations with topography. Comput. Math. Appl. 72, 568–593 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallow-water equations with topography or Manning friction. J. Comput. Phys. 335, 115–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Murillo, J., García-Navarro, P.: Augmented versions of the HLL and HLLC Riemann solvers including source terms in one and two dimensions for shallow water flow applications. J. Comput. Phys. 231, 6861–6906 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nogueira, X., Ramírez, L., Clain, S., Loubère, R., Cueto-Felgueroso, L., Colominas, I.: High-accurate SPH method with multidimensional optimal order detection limiting. Comput. Methods Appl. Mech. Eng. 310, 134–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Reis, C., Figueiredo, J., Clain, S., Omira, R., Baptista, M.A., Miranda, J.M.: Comparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 example. Geophys. J. Int. 216(2), 958–983 (2019)

    Article  Google Scholar 

  40. Tann, S., Deng, X., Shimizu, Y., Loubère, R., Xiao, F.: Solution property preserving reconstruction for finite volume scheme: a boundary variation diminishing+ multidimensional optimal order detection framework. Int. J. Numer. Methods Fluids 92(6), 603–634 (2020)

    Article  MathSciNet  Google Scholar 

  41. Toro, E.F., Spruce, M., Spares, W.: Restoration of the contact surface in the HLL Riemann solver. Shock Wave 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  42. Turpault, R., Nguyen-Bui, T.: A high order MOOD method for compressible Navier–Stokes equations: application to hypersonic viscous flows. Prog. Comput. Fluid Dyn. Int. J. 19(6), 337–345 (2019)

    Article  MathSciNet  Google Scholar 

  43. van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  44. von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vilar, F.: A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction. J. Comput. Phys. 387, 245–279 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by FEDER – Fundo Europeu de Desenvolvimento Regional, through COMPETE 2020 – Programa Operacional Fatores de Competitividade, and the National Funds through FCT – Fundação para a Ciência e a Tecnologia, Project No. POCI-01-0145-FEDER-028118, PTDC/MAT-APL/28118/2017. This work was partially financially supported by: Project POCI-01-0145-FEDER-028247 - funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES. This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Figueiredo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, J., Clain, S. A MOOD-MUSCL Hybrid Formulation for the Non-conservative Shallow-Water System. J Sci Comput 88, 2 (2021). https://doi.org/10.1007/s10915-021-01513-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01513-z

Keywords

Mathematics Subject Classification

Navigation