Skip to main content
Log in

Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily convex, polygonal domains, we design an a posteriori error estimator and prove its global reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acosta, G., Durán, R.G.: Divergence operator and related inequalities. springerbriefs in mathematics. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6985-2

    Book  MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  3. Ainsworth, M., Oden, J.T.: A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34(1), 228–245 (1997). https://doi.org/10.1137/S0036142994264092

    Article  MathSciNet  MATH  Google Scholar 

  4. Allendes, A., Otárola, E., Salgado, A.J.: A posteriori error estimates for the stationary Navier-Stokes equations with Dirac measures. SIAM J. Sci. Comput. 42(3), A1860–A1884 (2020). https://doi.org/10.1137/19M1292436

    Article  MathSciNet  MATH  Google Scholar 

  5. Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105(2), 193–216 (2006). https://doi.org/10.1007/s00211-006-0041-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988). https://doi.org/10.1137/0725070

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E., Kunisch, K.: Optimal control of the two-dimensional stationary Navier-Stokes equations with measure valued controls. SIAM J. Control Optim. 57(2), 1328–1354 (2019). https://doi.org/10.1137/18M1185582

    Article  MathSciNet  MATH  Google Scholar 

  8. Ern, A., Guermond, J.L.: Theory and practice of finite elements. Appl. Math. Sci. (2004). https://doi.org/10.1007/978-1-4757-4355-5

    Article  MATH  Google Scholar 

  9. Fuica, F., Lepe, F., Otárola, E., Quero, D.: A posteriori error estimates in \({\bf W}^{1,p} \times {L}^p\) spaces for the Stokes system with Dirac measures. Comput. Math. Appl. 94, 47–59 (2021). https://doi.org/10.1016/j.camwa.2021.04.017

  10. Fuica, F., Otarola, E., Quero, D.: Error estimates for optimal control problems involving the Stokes system and Dirac measures. Appl. Math, Optim (2020). https://doi.org/10.1007/s00245-020-09693-0

  11. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes Springer Monographs in Mathematics. equations, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-0-387-09620-9. Steady-state problems

    Book  Google Scholar 

  12. Girault, V., Nochetto, R.H., Scott, L.R.: Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra. Numer. Math. 131(4), 771–822 (2015). https://doi.org/10.1007/s00211-015-0707-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. (2005). https://doi.org/10.1016/j.matpur.2004.09.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-5. Theory and algorithms

    Book  MATH  Google Scholar 

  15. Lacouture, L.: A numerical method to solve the Stokes problem with a punctual force in source term. Comptes Rendus Mecanique 343(3), 187–191 (2015). https://doi.org/10.1016/j.crme.2014.09.008

    Article  Google Scholar 

  16. Lions, P.L.: Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3. The Clarendon Press, Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications

  17. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque (344), viii+241 (2012)

  18. Otárola, E., Salgado, A.J.: A weighted setting for the stationary Navier Stokes equations under singular forcing. Appl. Math. Lett. 99, 105933, 7 (2020). https://doi.org/10.1016/j.aml.2019.06.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Tartar, L.: An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, vol. 1. Springer, Berlin; UMI, Bologna (2006). https://doi.org/10.1007/3-540-36545-1

  20. Temam, R.: Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI (2001). https://doi.org/10.1090/chel/343. Theory and numerical analysis, Reprint of the 1984 edition

  21. Tsai, T.P.: Lectures on Navier-Stokes equations, Graduate Studies in Mathematics, vol. 192. American Mathematical Society, Providence, RI (2018)

  22. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989). https://doi.org/10.1007/BF01390056

    Article  MathSciNet  MATH  Google Scholar 

  23. Verfürth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80(4), 641–663 (1998). https://doi.org/10.1007/s002110050381

    Article  MathSciNet  MATH  Google Scholar 

  24. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Lepe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FL is partially supported by ANID-Chile through FONDECYT postdoctoral project 3190204 and FONDECYT project 11200529. EO is partially supported by ANID-Chile through FONDECYT project 11180193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepe, F., Otárola, E. & Quero, D. Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures. J Sci Comput 87, 97 (2021). https://doi.org/10.1007/s10915-021-01496-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01496-x

Keywords

Mathematics Subject Classification

Navigation