Skip to main content
Log in

Simultaneous Image Enhancement and Restoration with Non-convex Total Variation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we propose a novel variational model for the joint enhancement and restoration of low-light images corrupted by blurring and/or noise. The model decomposes a given low-light image into reflectance and illumination images that are recovered from blurring and/or noise. In addition, our approach utilizes non-convex total variation regularization on all variables. This allows us to adequately denoise homogeneous regions while preserving the details and edges in both reflectance and illumination images, which leads to clean and sharp final enhanced images. To solve the non-convex model, we employ a proximal alternating minimization approach, and then an iteratively reweighted \(\ell _1\) algorithm and an alternating direction method of multipliers are adopted for solving the subproblems. These techniques contribute to an efficient iterative algorithm, with its convergence proven. Experimental results demonstrate the effectiveness of the proposed model when compared to other state-of-the-art methods in terms of both visual aspect and image quality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake, A.: Boundary conditions for lightness computation in Mondrian world. Comput. Vis. Graph. Image Process. 32, 314–327 (1985)

    Article  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., et al.: J.E.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  5. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, H.B., Ng, M.K., Wang, W., Zeng, T.Y.: Retinex image enhancement via a learned dictionary. Opt. Eng. 54(1), 013107 (2015)

    Article  Google Scholar 

  9. Chen, C., Ng, M.K., Zhao, X.L.: Alternating direction method of multipliers for nonlinear image restoration problems. IEEE Trans. Image Process. 24, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, M.H., Huang, T.Z., Zhao, X.L., Ma, T.H., Huang, J.: A variational model with hybrid hyper-Laplacian priors for retinex. Appl. Math. Model. 66, 305–321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, T.J., Baqai, F.A.: Analysis and extensions of the Frankle–McCann retinex algorithm. J. Electron. Imaging 13, 85–92 (2004)

    Article  Google Scholar 

  12. Csiszár, I., Tusná, G.: Information geometry and alternating minimization procedures. Stat. Decis. 1, 205–237 (1984)

    MathSciNet  Google Scholar 

  13. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  14. Elad, M.: Retinex by two bilateral filters. In: Scale Space and PDE Methods in Computer Vision, pp. 217–229

  15. Frankle, J., McCann, J.: Method and apparatus for lightness imaging. U.S. Patent 4384336 (1983)

  16. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

  17. Funt, B., Ciurea, F., McCann, J.: Retinex in matlabtm. J. Electron. Imaging 13, 48–57 (2004)

    Article  Google Scholar 

  18. Funt, B., Drew, M., Brockington, M.: Recovering shading from color images. In: Proceedings of the 2nd European Conference on Computational Visualization, pp. 124–132 (1992)

  19. Goldstein, T., Osher, S.: The split Bregman method for \(l^1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, X., Li, Y., Ling, H.: Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horn, B.K.P.: Determining lightness from an image. Comput. Graph. Image Process. 3, 277–299 (1974)

    Article  Google Scholar 

  22. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  MATH  Google Scholar 

  23. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the Advances in Neural Information Processing Systems pp. 1033–1041 (2009)

  24. Land, E.H.: The retinex theory of color vision. Sci. Am. 237, 108–128 (1977)

    Article  Google Scholar 

  25. Land, E.H.: Recent advances in the retinex theory and some implications for cortical computations: color vision and natural image. Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983)

    Article  Google Scholar 

  26. Land, E.H.: An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad. Sci. USA 83, 3078–3080 (1986)

    Article  Google Scholar 

  27. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)

    Article  Google Scholar 

  28. Li, H.F., Zhang, L.P., Shen, H.F.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)

    Article  Google Scholar 

  29. Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730–3734 (2015)

  30. Li, M., Liu, J., Yang, W., Guo, Z.: Joint denoising and enhancement for low-light images via retinex model. In: International Forum on Digital TV and Wireless Multimedia Communications IFTC 2017: Digital TV and Wireless Multimedia Communication, pp. 91–99 (2017)

  31. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liang, J.W., Zhang, X.Q.: Retinex by higher order total variation L1 decomposition. J. Math. Imaging Vis. 52(3), 345–355 (2015)

    Article  MATH  Google Scholar 

  33. Limare, N., Morel, J.M., Petro, A., Sbert, C.: Retinex poisson equation: a model for color perception. Image Process. On Line 1, 39–50 (2011)

    Article  Google Scholar 

  34. Liu, L., Pang, Z.F., Duan, Y.: Retinex based on exponent-type total variation scheme. Inverse Probl. Imaging 12(5), 1199–1217 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, T.H., Lou, Y., Huang, T.Z.: Truncated L1-2 models for sparse recovery and rank minimization. SIAM J. Image Sci. 10(3), 1346–1380 (2017)

    Article  MATH  Google Scholar 

  36. Ma, W., Morel, J.M., Osher, S., Chien, A.: An L1-based variational model for retinex theory and its applications to medical images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 153–160 (2011)

  37. Ma, W., Osher, S.: A TV Bregman iterative model of retinex theory. Inverse Probl. Imaging 6(4), 697–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marini, D.: A computational approach to color adaptation effects. Image Vis. Comput. 18, 1005–1014 (2000)

    Article  Google Scholar 

  39. McCann, J.: Lessons learned from Mondrians applied to real images and color gamuts. In: Proceedings of the IST/SID 7th Color Imaging Conference, pp. 1–8 (1999)

  40. McCann, J.J., Sobel, I.: Experiments with retinex. Technical report, HPL Color Summit, Hewlett Packard Laboratories (1998)

  41. Morel, J.M., Petro, A.B., Sbert, C.: Fast implementation of color constancy algorithms. In: Proceedings of SPIE, Color Imaging XIV: Displaying, Processing, Hardcopy, and Applications, vol. 7241, p. 724106 (2009)

  42. Morel, J.M., Petro, A.B., Sbert, C.: A PDE formalization of retinex theory. IEEE Trans. Image Process. 19, 2825–2837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithm for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 337–345 (1990)

  46. Provenzi, E., Carli, L.D., Rizzi, A., Marini, D.: Mathematical definition and analysis of the retinex algorithm. J. Opt. Soc. Am. A 22, 2613–2621 (2005)

    Article  MathSciNet  Google Scholar 

  47. Ren, X., Li, M., Cheng, W.H., Liu, J.: Joint enhancement and denoising method via sequential decomposition. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018)

  48. Ren, X., Yang, W., Cheng, W., Liu, J.: LR3M: robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 29, 5862–5876 (2020)

    Article  MathSciNet  Google Scholar 

  49. Ren, Z., Li, J., Liu, S., Zeng, B.: Meshflow video denoising. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2966–2970 (2017)

  50. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

    MATH  Google Scholar 

  51. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Terzopoulos, D.: Image analysis using multigrid relaxation method. IEEE Trans. Pattern Anal. Mach. Intell. 8, 129–139 (1986)

    Article  Google Scholar 

  53. Vese, L., Chan, T.: Redced non-convex functional approximations for image restoration and segmentation. UCLA CAM Report, pp. 97–56 (1997)

  54. Wang, W., He, C.: A variational model with barrier functionals for retinex. SIAM J. Imaging Sci. 8(3), 1955–1980 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, W., Ng, M.K.: A nonlocal total variation model for image decomposition: illumination and reflectance. Numer. Math. Theory Methods Appl. 7(3), 334–355 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  57. Yue, H., Yang, J., Sun, X., Wu, F., Hou, C.: Contrast enhancement based on intrinsic image decomposition. IEEE Trans. Image Process. 26(8), 3981–3994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, L., Shen, P., Peng, X., Zhu, G., Song, J., Wei, W., Song, H.: Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process. 10(11), 840–847 (2016)

    Article  Google Scholar 

  59. Zosso, D., Tran, G., Osher, S.: Non-local retinex: a unifying framework and beyond. SIAM J. Imaging Sci. 8(2), 787–826 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoun Jung.

Ethics declarations

Funding

The work of Myeongmin Kang was supported by the National Research Foundation of Korea (2019R1I1A3A01055168). The work of Miyoun Jung was supported by Hankuk University of Foreign Studies Research Fund and the National Research Foundation of Korea (2019R1F1A1057271).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 1

A Proof of Lemma 1

Proof

(1) Since \(\mathbf{u}^{k+1}\) is an optimal solution of (18), we can obtain

$$\begin{aligned} \mathcal {E}(\mathbf{u}^{k+1},L^k,\mathbf{R}^k) + \frac{\delta }{2}\Vert \mathbf{u}^{k+1} - \mathbf{u}^k\Vert _2^2 \le \mathcal {E}(\mathbf{u}^{k},L^k,\mathbf{R}^k). \end{aligned}$$

Similarly, from problems (19) and (20), we can obtain the following inequalities

$$\begin{aligned} \mathcal {E}(\mathbf{u}^{k+1},L^{k+1},\mathbf{R}^k) + \frac{\delta }{2}\Vert L^{k+1} - L^k\Vert _2^2\le & {} \mathcal {E}(\mathbf{u}^{k+1},L^k,\mathbf{R}^k), \\ \mathcal {E}(\mathbf{u}^{k+1},L^{k+1},\mathbf{R}^{k+1}) + \frac{\delta }{2}\Vert \mathbf{R}^{k+1} - \mathbf{R}^k\Vert _2^2\le & {} \mathcal {E}(\mathbf{u}^{k+1},L^{k+1},\mathbf{R}^k). \end{aligned}$$

Summing the above inequalities leads to the following inequality

$$\begin{aligned}&\mathcal {E}(\mathbf{u}^{k+1},L^{k+1},\mathbf{R}^{k+1}) + \frac{\delta }{2}\Vert \mathbf{u}^{k+1} - \mathbf{u}^k\Vert _2^2 + \frac{\delta }{2}\Vert L^{k+1} - L^k\Vert _2^2 + \frac{\delta }{2}\Vert \mathbf{R}^{k+1} - \mathbf{R}^k\Vert _2^2\nonumber \\&\quad \le \mathcal {E}(\mathbf{u}^{k},L^k,\mathbf{R}^k),\quad \quad \forall k\ge 0. \end{aligned}$$
(53)

By summing the inequality in (53) over \(k=0,\ldots ,N-1\) for a large integer N, we have

$$\begin{aligned}&\frac{\delta }{2}\sum _{k=0}^{N-1} (\Vert \mathbf{u}^{k+1} - \mathbf{u}^k\Vert _2^2 + \Vert L^{k+1} - L^k\Vert _2^2 + \Vert \mathbf{R}^{k+1} - \mathbf{R}^k\Vert _2^2)\nonumber \\&\quad \le \mathcal {E}(\mathbf{u}^{0},L^0,\mathbf{R}^0) - \mathcal {E}(\mathbf{u}^{N},L^{N},\mathbf{R}^{N}). \end{aligned}$$
(54)

Since \(\inf \mathcal {E} \ge 0\), by taking \(N\rightarrow \infty \), the inequality (54) becomes

$$\begin{aligned} \sum _{k=0}^{\infty } (\Vert \mathbf{u}^{k+1} - \mathbf{u}^k\Vert _2^2 + \Vert L^{k+1} - L^k\Vert _2^2 + \Vert \mathbf{R}^{k+1} - \mathbf{R}^k\Vert _2^2) < \infty . \end{aligned}$$

(2) Define

$$\begin{aligned} \mathcal {E}_1(\mathbf{u})= & {} \frac{\lambda }{2}\Vert \mathbf{f}-K\mathbf{u}\Vert _2^2 + {\mu }\,\,\langle \phi _1(|\nabla \mathbf{u}|),\mathbf{1}\rangle , \\ \mathcal {E}_2(L)= & {} \frac{\alpha _1}{2}\Vert L-\hat{L}\Vert _2^2+\alpha _2\,\langle \phi _2(|\nabla L|),\mathbf{1}\rangle ,\\ \mathcal {E}_3(\mathbf{R})= & {} \beta _1 \Vert \nabla \mathbf{R}- \mathbf{G}\Vert _1 + \beta _2\,\langle \phi _3(|\nabla \mathbf{R}|),\mathbf{1}\rangle . \end{aligned}$$

From the first-order optimality conditions of problems (18)–(20), we can obtain

$$\begin{aligned} \mathbf{0}\in & {} \delta (\mathbf{u}^k - \mathbf{u}^{k-1}) + \partial _\mathbf{u}\mathcal {E}(\mathbf{u}^k,L^{k-1},\mathbf{R}^{k-1}), \quad \forall k\ge 1,\nonumber \\ \mathbf{0}\in & {} \delta (L^k - L^{k-1}) + \partial _L\mathcal {E}(\mathbf{u}^k,L^{k},\mathbf{R}^{k-1}), \quad \forall k\ge 1,\nonumber \\ \mathbf{0}\in & {} \delta (\mathbf{R}^k - \mathbf{R}^{k-1}) + \partial _\mathbf{R}\mathcal {E}(\mathbf{u}^k,L^{k},\mathbf{R}^k), \quad \forall k\ge 1. \end{aligned}$$
(55)

Since Q is a smooth function, we have

$$\begin{aligned} \partial _\mathbf{u}\mathcal {E}(\mathbf{u}^k,L^{k-1},\mathbf{R}^{k-1})= & {} \partial \mathcal {E}_1(\mathbf{u}^k) + \nabla _\mathbf{u}Q(\mathbf{u}^k,L^{k-1},\mathbf{R}^{k-1}),\nonumber \\ \partial _L \mathcal {E}(\mathbf{u}^k,L^{k},\mathbf{R}^{k-1})= & {} \partial \mathcal {E}_2(L^k) + \nabla _L Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k-1}), \nonumber \\ \partial _\mathbf{R}\mathcal {E}(\mathbf{u}^k,L^{k},\mathbf{R}^{k})= & {} \partial \mathcal {E}_3(\mathbf{R}^k) + \nabla _\mathbf{R}Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}). \end{aligned}$$
(56)

Thus, the formulas in (55) can be written as

$$\begin{aligned}&-\delta (\mathbf{u}^k - \mathbf{u}^{k-1}) - (\nabla _\mathbf{u}Q(\mathbf{u}^k,L^{k-1},\mathbf{R}^{k-1}) - \nabla _\mathbf{u}Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}))\\&\quad \in \partial \mathcal {E}_1(\mathbf{u}^k) + \nabla _\mathbf{u}Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}),\\&-\delta (L^k - L^{k-1}) - (\nabla _L Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k-1}) - \nabla _L Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}))\\&\quad \in \partial \mathcal {E}_2(L^k) + \nabla _L Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}),\\&-\delta (\mathbf{R}^k - \mathbf{R}^{k-1})\in \partial \mathcal {E}_3(\mathbf{R}^k) + \nabla _\mathbf{R}Q(\mathbf{u}^k,L^{k},\mathbf{R}^{k}). \end{aligned}$$

From the subdifferential calculus for separable functions [50], we can obtain the result \((\tilde{\mathbf{u}}^{k}, \tilde{L}^{k}, \tilde{\mathbf{R}}^{k}) \in \partial \mathcal {E}(\mathbf{u}^{k},{L}^{k}, \mathbf{R}^{k})\). If \((\mathbf{u}^{k_i},{L}^{k_i}, \mathbf{R}^{k_i})\) is a bounded subsequence of \((\mathbf{u}^{k},{L}^{k}, \mathbf{R}^{k})\), \((\mathbf{u}^{k_i},{L}^{k_i-1}, \mathbf{R}^{k_i-1})\) and \((\mathbf{u}^{k_i},{L}^{k_i}, \mathbf{R}^{k_i-1})\) are also bounded. From the property (1), we have

$$\begin{aligned}&(\mathbf{u}^{k_i},{L}^{k_i-1}, \mathbf{R}^{k_i-1}) - (\mathbf{u}^{k_i},{L}^{k_i}, \mathbf{R}^{k_i}) \rightarrow \mathbf{0}\quad \text {as}\quad k_i\rightarrow \infty ,\\&(\mathbf{u}^{k_i},{L}^{k_i}, \mathbf{R}^{k_i-1}) - (\mathbf{u}^{k_i},{L}^{k_i}, \mathbf{R}^{k_i}) \rightarrow \mathbf{0}\quad \text {as}\quad k_i\rightarrow \infty . \end{aligned}$$

Since \(\nabla _\mathbf{u}Q\) and \(\nabla _L Q\) are Lipschitz continuous on a bounded domain, \((\tilde{\mathbf{u}}^{k_i}, \tilde{L}^{k_i}, \tilde{\mathbf{R}}^{k_i}) \rightarrow \mathbf{0}\) as \(k_i\rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Jung, M. Simultaneous Image Enhancement and Restoration with Non-convex Total Variation. J Sci Comput 87, 83 (2021). https://doi.org/10.1007/s10915-021-01488-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01488-x

Keywords

Mathematics Subject Classification

Navigation