Skip to main content
Log in

A New Sixth-Order Finite Difference WENO Scheme for Fractional Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new sixth-order finite difference weighted essentially non-oscillatory (WENO) scheme for solving the fractional differential equations which may contain non-smooth solutions at a later time, even if the initial solution is smooth enough. After splitting the Caputo fractional derivative of order \(\alpha \) \((1<\alpha \le 2)\) into a weakly singular integral and a classical second derivative, the classical Gauss–Jacobi quadrature is used to solve the weakly singular integral and a new spatial WENO-type reconstruction methodology is proposed to approximate the second derivative. There are two advantages of the new WENO scheme: the first is that the linear weights can be any positive numbers on condition that their summation equals one, and the second is its simplicity in the engineering applications. The new WENO reconstruction is a convex combination of a quartic polynomial with two linear polynomials defined on three unequal-sized spatial stencils in a traditional WENO fashion. This new sixth-order WENO scheme uses smaller number of cell average information than that of the same order classical WENO schemes and could eliminate non-physical oscillations near strong discontinuities when solving the fractional differential equations. Some benchmark examples are given to demonstrate the efficiency, robustness, and good performance of this new finite difference WENO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abedian, R., Adibi, H., Dehghan, M.: A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput. Phys. Commun. 184, 1874–1888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casper, J.: Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions. AIAA J. 30, 2829–2835 (1992)

    Article  MATH  Google Scholar 

  7. Casper, J., Atkins, H.L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, W.H.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, W.H., Du, S.D., Wu, Y.J.: High order finite difference WENO schemes for fractional differential equations. Appl. Math. Lett. 26, 362–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, L., Hu, X.Y.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems, In: Carasso, C. et al. (eds.) Proceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1987)

  17. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes, IMRC Technical Summary Rept. 2823, Univ. of Wisconsin, Madison, WI, May (1985)

  19. Hu, G., Li, R., Tang, T.: A robust WENO type finite volume solver for steady Euler equations on unstructured grids. Commun. Comput. Phys. 9, 627–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws, M2AN. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.J., Xu, C.J.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Comput. Phys. Commun. 8, 1016–1051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.J.: Central schemes on overlapping cells. J. Comput. Phys. 209, 82–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y.J., Shu, C.-W., Tadmor, E., Zhang, M.P.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Y.J., Shu, C.-W., Tadmor, E., Zhang, M.P.: Non-oscillatory hierarchical reconstruction for central and finite volume schemes. Commun. Comput. Phys. 2, 933–963 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Liu, Y.J., Shu, C.-W., Tadmor, E., Zhang, M.P.: \(L^2\) stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: M2AN 42, 593–607 (2008)

    Article  MATH  Google Scholar 

  32. Liu, Y.J., Shu, C.-W., Tadmor, E., Zhang, M.P.: Central local discontinuous Galerkin methods on overlapping cells for diffusion equations. ESAIM: M2AN 45, 1009–1032 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, Y.J., Shu, C.-W., Xu, Z.L.: Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation laws. Nonlinearity 22, 2799–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Shu, C.-W., Zhang, M.: High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33, 939–965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Y., Zhang, Y.T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54, 603–621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 72(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  39. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Meth. Fl. 53, 531–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, Y.Q., Zha, G.C.: A robust seventh-order WENO scheme and its applications, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-757, Reno, Nevada

  42. Shi, J., Hu, C.Q., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  43. Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, Z.J., Chen, R.F.: Optimized weighted essentially non-oscillatory schemes for linear waves with discontinuity. J. Comput. Phys. 174, 381–404 (2001)

    Article  MATH  Google Scholar 

  47. Xu, Z.L., Liu, Y.J., Du, H.J., Lin, G., Shu, C.-W.: Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. J. Comput. Phys. 230, 6843–6865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu, Z.L., Liu, Y.J., Shu, C.-W.: Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells. J. Comput. Phys. 228, 2194–2212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, Y.T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Y.T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscilatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)

    Article  MathSciNet  Google Scholar 

  52. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yan Zhang: Research was supported by Science Challenge Project, No. TZ2016002

Weihua Deng: Research was supported by NSFC grant 12071195 and the AI and Big Data Funds under Grant No. 2019620005000775

Jun Zhu: Research was supported by NSFC grant 11872210 and Science Challenge Project, No. TZ2016002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Deng, W. & Zhu, J. A New Sixth-Order Finite Difference WENO Scheme for Fractional Differential Equations. J Sci Comput 87, 73 (2021). https://doi.org/10.1007/s10915-021-01486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01486-z

Keywords

Mathematics Subject Classification

Navigation