Skip to main content
Log in

A Novel Lattice Boltzmann Model for Fourth Order Nonlinear Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel lattice Boltzmann (LB) equation model is proposed to solve the fourth order nonlinear partial differential equation (NPDE). Different from existing LB models, a source distribution function is introduced to remove some unwanted terms in the nonlinear part of the equation. Hereby, the equilibrium distribution function is designed to follow the rule of Chapman–Enskog (C–E) analysis. Through the C–E procedure, the fourth order NPDE can be recovered perfectly from the proposed LB model. A series of numerical experiments have been carried out to solve some widely studied fourth order NPDEs, including the Kuramoto–Sivashinsky equation, Cahn–Hilliard equation with double-well potential and a fourth order diffuse interface model with Peng–Robinson equation of state. Numerical results show that the performance of the present LB model is much better than other existing LB models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aidun, C., Clausen, J.: Lattice Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42, 439–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe–Al alloys. Acta Metall. 24, 425–437 (1976)

    Article  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breure, B., Peters, C.J.: Modeling of the surface tension of pure components and mixtures using the density gradient theory combined with a theoretically derived influence parameter correlation. Fluid Phase Equil. 334, 96–189 (2012)

    Article  Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  6. Chai, Z.H., Shi, B.C., Guo, Z.L.: A multiple-relaxation-time Lattice Boltzmann model for general nonlinear anisotropic convection–diffusion equations. J. Sci. Comput. 69, 355–390 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chai, Z.H., He, N.Z., Guo, Z.L., Shi, B.C.: Lattice Boltzmann model for high-order nonlinear partial differential equations. Phys. Rev. E 97, 013304 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chai, Z., Shi, B., Zheng, L.: A unified lattice Boltzmann model for some nonlinear partial differential equations. Chaos Solitons Fractals 36, 874–882 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Kang, Q., Tang, Q., et al.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J Heat Mass Trans. 85, 935–949 (2015)

    Article  Google Scholar 

  10. Chen, L.J., Ma, C.F.: A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations. Chin. Phys. B 19, 010504 (2010)

    Article  Google Scholar 

  11. Chen, S., Doolen, G.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiu, P.H., Lin, Y.T.: A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230, 185–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, X., Kou, J., Qiao, Z., Sun, S.: A componentwise convex splitting scheme for diffuse interface models with van der Waals and Peng–Robinson equations of state. SIAM J. Sci. Comput. 39, B1–B28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice Boltzmann model for interface tracking equation. Phys. Rev. E 91, 063309 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)

    Article  Google Scholar 

  16. Guo, Z., Shu, C.: Lattice Boltzmann Method and its Applications in Engineering. World Scientific Publishing, Singapore (2013)

    Book  MATH  Google Scholar 

  17. Guo, Z., Zheng, C., Zhao, T.: A lattice BGK scheme with general propagation. J. Sci. Comp. 16(4), 569–585 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kou, J., Sun, S.: Unconditionally stable methods for simulating multi-component two-phase interface models with Peng–Robinson equation of state and various boundary conditions. J. Comput. Appl. Math. 291, 158–182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kou, J., Sun, S., Wang, X.: Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56, 3219–3248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kou, J., Sun, S., Wang, X.: A novel energy factorization approach for the diffuse-interface model with Peng–Robinson equation of state. SIAM J. Sci. Comput. 42, B30–B56 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluids Mech. 271, 311 (1994)

    Article  Google Scholar 

  23. Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191–1251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lai, H., Ma, C.: Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation. Phys. A (Amsterdam) 388, 1405–1412 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lai, H., Ma, C.: The lattice Boltzmann model for the second-order Benjamin–Ono equations. J. Stat. Mech. 2010, P04011 (2010)

    Article  MATH  Google Scholar 

  26. Lee, T., Lin, C.L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75, 993–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Luo, K.H., Gao, Y.J., He, Y.L.: Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85, 026704 (2012)

    Article  Google Scholar 

  29. Li, Q., Luo, K., Kang, Q., He, Y., et al.: Lattice Boltzmann methods for multiphase flow and phasechange heat transfer. Progr. Energy Combust. 52, 62–105 (2016)

    Article  Google Scholar 

  30. Liang, H., Shi, B., Guo, Z.L., Chai, Z.H.: Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)

    Article  Google Scholar 

  31. Liu, H., Kang, Q., Leonardi, C.R., et al.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20, 777–805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Otomo H.,: Lattice Boltzmann models for higher-order partial differential equations. Ph.D Thesis, Tufts University (2019)

  33. Peng, Q.: A convex-splitting scheme for a diffuse interface model with Peng–Robinson equation of state. Adv. Appl. Math. Mech. 9, 1162–1188 (2017)

    Article  MathSciNet  Google Scholar 

  34. Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng–Robinson equation of state. SIAM J. Sci. Comput. 36, B708–B728 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qiao, Z., Yang, X., Zhang, Y.: Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state. Phys. Rev. E 98(2), 023306 (2018)

    Article  MathSciNet  Google Scholar 

  36. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Article  Google Scholar 

  37. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 79, 016701 (2009)

    Article  Google Scholar 

  39. Succi, S.: A note on the lattice Boltzmann versus finite-difference methods for the numerical solution of the Fishers equation. Int. J. Mod. Phys. C 25, 1340015 (2014)

    Article  MathSciNet  Google Scholar 

  40. Wang, Y., Shu, C., Huang, H.B., Teo, C.J.: Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404–423 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Shu, C., Shao, J.Y., Wu, J., Niu, X.D.: A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio. J. Comput. Phys. 290, 336–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, G., Zhang, J.: A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation. Math. Comput. Simul. 79, 1554–1565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, K., Guo, Z.: Lattice Boltzmann method for binary fluids based on mass-conserving quasi-incompressible phase-field theory. Phys. Rev. E 93, 043303 (2016)

    Article  MathSciNet  Google Scholar 

  45. Ye, L., Yan, G., Li, T.: Numerical method based on the lattice Boltzmann model for the Kuramoto–Sivashinsky equation. J. Sci. Comput. 49, 195–210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, X.M., Shi, B.C.: A lattice Bhatnagar–Gross–Krook model for a class of the generalized Burgers equations. Chin. Phys. 15, 1441–1449 (2006)

    Article  Google Scholar 

  47. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, T., Shi, B.C., Guo, Z.L., et al.: General bounce-back scheme for concentration boundary condition in the lattice Boltzmann method. Phys. Rev. E 85, 016701 (2012)

    Article  Google Scholar 

  49. Zheng, L., Zheng, S., Zhai, Q.: Lattice Boltzmann equation method for the Cahn–Hilliard equation. Phys. Rev. E 91, 013309 (2015)

    Article  MathSciNet  Google Scholar 

  50. Zu, Y.Q., He, S.: Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Phys. Rev. E 87, 043301 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for careful reading and constructive comments that improved the quality of this paper. The authors also appreciate the valuable discussions with Prof. Shuyu Sun in King Abdullah University of Science and Technology. Z. Qiao’s work is partially supported by Hong Kong Research Council GRF Grant 15325816 and the Hong Kong Polytechnic University internal research fund G-UAEY. X. Yang’s work is partially supported by the Natural Science Foundation of China (Grant No. 11802090) and the Hong Kong Polytechnic University Postdoctoral Fellowships Scheme 1-YW1D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The definition of parameters a(T) and b are given by the following mixing rules

$$\begin{aligned} a(T)= & {} \sum _{i=1}^{M}\sum _{j=1}^{M}y_{i}y_{j}({a_{i}a_{j}})^{1/2}(1-k_{ij}),\\ b= & {} \sum _{i=1}^{M}y_{i}b_{i}, \end{aligned}$$

where \(y_{i}=n_{i}/n\) is the mole fraction of component i, \(k_{ij}\) is the binary interaction coefficient of Peng–Robinson EOS, which is usually computed from experimental correlation. The Peng–Robinson parameters \(a_i\) and \(b_i\) for pure-substance component i can be derived from the critical properties of the particular species as follows:

$$\begin{aligned} a_{i}\left( T\right) =0.45724\frac{R^{2}T_{c_{i}}^{2}}{P_{c_{i}}}\left( 1+m_{i}\left( 1-\sqrt{\frac{T}{T_{c_{i}}}}\right) \right) ^{2}, \quad b_{i}=0.07780\frac{RT_{c_{i}}}{P_{c_{i}}}. \end{aligned}$$

Here, \(T_{c_i}\) and \(P_{c_i}\) represent the critical temperature and the critical pressure of a pure substance, respectively. The parameter \(m_i\) has the following relations with the acentric parameter \(\omega _i\):

$$\begin{aligned} m_i= & {} 0.37464 + 1.54226\omega _i - 0.26992{\omega _i ^2},\omega _i \le 0.49,\\ m_i= & {} 0.379642 + 1.485030\omega _i - 0.164423{\omega _i ^2} + 0.016666{\omega _i ^3},\omega _i > 0.49. \end{aligned}$$

The acentric parameter \(\omega _i\) can be computed by using critical temperature \(T_{c_{i}}\), critical pressure \(P_{c_{i}}\) and the normal boiling point \(T_{b_{i}}\):

$$\begin{aligned} {\omega _i} = \frac{3}{7}\left( \frac{{{{\log }_{10}}\left( \frac{{{P_{{c_i}}}}}{{14.695\mathrm{{PSI}}}}\right) }}{{\frac{{{T_{{c_i}}}}}{{{T_{{b_i}}}}} - 1}}\right) - 1. \end{aligned}$$

The cross influence parameter \(c_{ij}\) can be obtained by using the modified geometric mean rule

$$\begin{aligned} c_{ij}=(1-\beta _{ij})\sqrt{c_{i}c_{j}}, \end{aligned}$$

where \(\beta _{ij}\) represents the binary interaction coefficient for the influence parameter. Its value is usually assumed to be zero in most engineering practice. \(c_i\) is the pure component influence parameter, which is related to the Peng–Robinson parameters \(a_i\) and \(b_i\) by [4]

$$\begin{aligned} c_i = a_i{b_i^{2/3}}\left( m_{1,i}^c\left( 1 - \frac{T}{{{T_{c_i}}}}\right) + m_{2,i}^c\right) . \end{aligned}$$

Here, \(m_{1,i}^c\) and \(m_{2,i}^c\) denote the coefficients which can be related to the acentric factor \(\omega _i\) by

$$\begin{aligned} m_{1,i}^c = - \frac{{{{10}^{ - 16}}}}{{1.2326 + 1.3757\omega _i }},\quad m_{2,i}^c = \frac{{{{10}^{ - 16}}}}{{0.9051 + 1.5410\omega _i }}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Yang, X. & Zhang, Y. A Novel Lattice Boltzmann Model for Fourth Order Nonlinear Partial Differential Equations. J Sci Comput 87, 51 (2021). https://doi.org/10.1007/s10915-021-01471-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01471-6

Keywords

Navigation