Abstract
Exponential integrators based on discrete gradient methods are applied to non-canonical Hamiltonian systems with added linear forcing/damping terms, which may be time-dependent. Changes in the dynamics, such as conservation of energy or Casimirs, which result from inclusion of the linear forcing/damping terms, are not exactly preserved by standard discrete gradient methods. However, those changes are shown to be exactly preserved by the exponential integrators in special circumstances. The methods are also symmetric, second order, and linearly stable. To demonstrate advantages in both accuracy and efficiency over other standard methods, the exponential integrators are applied to a three dimensional Lotka-Volterra system and a damped/driven Ablowitz-Ladik system.
Similar content being viewed by others
References
Discrete dissipative solitons: Abdullaev, FKh. Lect. Notes Phys. 661, 327–341 (2005)
Ascher, U.M., McLachlan, R.I.: Multi-symplectic box schemes and the Korteweg-de Vries equation. Appl. Numer. Math. 48, 255–269 (2004)
Bhatt, A., Floyd, D., Moore, B.E.: Second order conformal symplectic schemes for damped Hamiltonian systems. J. Sci Comput. 66, 1234–1259 (2016)
Bhatt, A., Moore, B.E.: Structure-preserving exponential Runge-Kutta methods. SIAM J. Sci. Comput. 39(2), A593–A612 (2017)
Bhatt, A., Moore, B.E.: Exponential integrators preserving local conservation laws of PDEs with time-dependent damping/driving forces. J. Comput. Appl. Math. 352, 341–351 (2019)
Cai, D., Bishop, A.R., Grønbech-Jensen, N., Malomed, B.A.: Moving solitons in the damped Ablowitz-Ladik model driven by a standing wave. Phys. Rev. E 50(2), R694–R697 (1994)
Cai, W., Zhang, H., Wang, Y.: Modelling damped acoustic waves by a dissipation-preserving conformal symplectic method. Proc. R. Soc. A 473, 20160798 (2017)
Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, J. Comp. Phys. 231, 6770-6789 (2012)
Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT Numer. Math. 51, 91–101 (2011)
Dressler, U.: Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. Phys. Rev. A 38(4), 2103–2109 (1988)
Fu, H., Zhou, W.-E., Qian, X., Song, S.-H., Zhang, L.-Y.: Conformal structure-preserving method for damped nonlinear Schrödinger equation. Chin. Phys. B 25(11), 405 (2016)
Gonzalez, O.: Time integration of discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)
Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)
Hairer, E., Lubich, Ch.: Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34, 452–461 (2014)
Hairer, E., Lubich, Ch., Wanner, G.: Geometric numerical integration: structure preserving algorithms for ordinary differential equations. Springer-Verlag, Berlin (2002)
Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SAIM Rev. 25, 35–61 (1983)
Itoh, T., Abe, K.: Hamiltonian preserving discrete canonical equations based on variational difference quotients. J. Comp. Phys. 76(1), 85–102 (1988)
Kong, X., Wu, H., Mei, F.: Structure-preserving algorithms for Birkhoffian systems. J. Geom. Phys. 62, 1157–1166 (2012)
Lawson, J.D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967)
Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, Cambridge (2004)
Li, Y.W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38(3), A1876–A1895 (2016)
Mei, L., Huang, L., Huang, S.: Exponential integrators with quadratic energy preservation for linear Poisson systems. J. Comp. Phys. 387, 446–454 (2019)
McLachlan, R.I., Perlmutter, M.: Conformal Hamiltonian systems. J. Geom. Phys. 39(4), 276–300 (2001)
McLachlan, R.I., Quispel, G.R.W.: What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity 14(6), 1689–1705 (2001)
McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)
McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. Lond. Ser. A 357, 1021–1045 (1999)
Modin, K., Söderlind, G.: Geometric integration of Hamiltonian systems perturbed by Rayleigh damping. BIT Numer. Math. 51, 977–1007 (2011)
Moore, B.E.: Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations. Math. Comput. Simulat. 80, 20–28 (2009)
Moore, B.E.: Multi-conformal-symplectic PDEs and discretizations. J. Comput. Appl. Math. 323, 1–15 (2017)
Moore, B.E., Noreña, L., Schober, C.M.: Conformal conservation laws and geometric integration for damped Hamiltonian PDEs. J. Comp. Phys. 232, 214–233 (2013)
Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A-Math. Theor. 41(4), 36 (2008)
Ruan, J., Wang, L.: Exponential discrete gradient schemes for stochastic differential equations, arXiv:1711.02522 [math.NA] (2017)
Sanz-Serna, J.M., Calvo, M.P.: Numerical hamiltonian problems. Chapman & Hall, London (1994)
Shang, X., Ottinger, H.C.: Structure-preserving integrators for dissipative systems based on reversible-irreversible splitting. Proc. R. Soc. A 476, 2019446 (2020)
Shchesnovich, V.S., Barashenkov, I.V.: Soliton-radiation in the parametrically driven, damped nonlinear Schrödinger equation. Physica D 164, 83–109 (2002)
Shen, X., Leok, M.: Geometric exponential integrators. J. Comp. Phys. 382, 27–42 (2019)
Stuart, A.M., Humphries, A.R.: Dynamical systems and numerical analysis. Cambridge Press, Cambridge (1998)
Su, H., Qin, M., Wang, Y., Scherer, R.: Multi-symplectic Birkhoffian structure for PDEs with dissipation terms. Phys. Lett. A 374, 2410–2416 (2010)
Sun, Y., Shang, Z.: Structure-preserving algorithms for Birkhoffian systems. Phys. Lett. A 336, 358–369 (2005)
Wang, B.: Exponential average-vector-field integrator for conservative or ,dissipative systems Recent Developments in Structure-Preserving algorithms for oscillatory differential equations. Springer, Singapore (2018)
Wang, B., Wu, X.: Exponential collocation methods for conservative or dissipative systems. J. Comput. Appl. Math. 360, 99–116 (2019)
Zemlyanaya, E.V., Barashenkov, I.V.: Traveling solitons in the damped-driven nonlinear Schrödinger equation. SIAM J. Appl. Math. 64, 800–818 (2004)
Acknowledgements
The author thanks Elena Celledoni, Brynjulf Owren, and Reinout Quispel for helpful conversations as the ideas in this article were being developed.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moore, B.E. Exponential Integrators Based on Discrete Gradients for Linearly Damped/Driven Poisson Systems. J Sci Comput 87, 56 (2021). https://doi.org/10.1007/s10915-021-01468-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01468-1
Keywords
- Damped/driven Poisson system
- Exponential integrator
- Discrete gradient
- Energy-preserving integrator
- Structure-preserving integrator