Skip to main content
Log in

The Pointwise Stabilities of Piecewise Linear Finite Element Method on Non-obtuse Tetrahedral Meshes of Nonconvex Polyhedra

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a Lipschitz polyhedral (can be nonconvex) domain in \({\mathbb {R}}^{3}\), and \(V_{h}\) denotes the finite element space of continuous piecewise linear polynomials. On non-obtuse quasi-uniform tetrahedral meshes, we prove that the finite element projection \(R_{h}u\) of \(u \in H^{1}(\Omega ) \cap C({\overline{\Omega }})\) (with \(R_{h} u\) interpolating u at the boundary nodes) satisfies

$$\begin{aligned} \Vert R_{h} u\Vert _{L^{\infty }(\Omega )} \le C \vert \log h \vert \Vert u\Vert _{L^{\infty }(\Omega )}. \end{aligned}$$

If we further assume \(u \in W^{1,\infty }(\Omega )\), then

$$\begin{aligned} \Vert R_{h} u\Vert _{W^{1, \infty }(\Omega )} \le C \vert \log h \vert \Vert u\Vert _{W^{1, \infty }(\Omega )}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  Google Scholar 

  2. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    Article  MathSciNet  Google Scholar 

  3. Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W_{\infty }^{1}\) norm on graded meshes. Math. Comput. 81, 743–764 (2012)

    Article  Google Scholar 

  4. Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.H.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009)

    Article  MathSciNet  Google Scholar 

  5. Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70(233), 107–119 (2000)

    Article  MathSciNet  Google Scholar 

  6. Křížek, M., Qun, L.: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3(1), 59–69 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Leykekhman, D., Li, B.: Weak discrete maximum principle of finite element methods in convex polyhedra. Math. Comput. 90, 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  8. Leykekhman, D., Vexler, B.: Finite element pointwise results on convex polyhedral domains. SIAM J. Numer. Anal. 54(2), 561–587 (2016)

    Article  MathSciNet  Google Scholar 

  9. Natterer, F.: Uber die punktweise Konvergenz finiter Elemente. Numer. Math. 25, 67–77 (1975)

    Article  MathSciNet  Google Scholar 

  10. Nitsche, J.A.: \(L_{\infty }\) convergence of finite element approximations, mathematical aspects of finite element methods. Lecture Notes in Math., vol. 606, pp. 261–274. Springer, Berlin (1977)

  11. Rannacher, R.: Zur \(L^{\infty }\)- Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149, 69–77 (1976)

    Article  MathSciNet  Google Scholar 

  12. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 148, 437–445 (1982)

    Article  MathSciNet  Google Scholar 

  13. Schatz, A.H.: A weak discrete maximum principle and stability of the finite element method in \(L^{\infty }\) on the plane polygonal domains. I. Math. Comput. 34, 77–91 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: part 1. Math. Comput. 67, 877–899 (1998)

    Article  Google Scholar 

  15. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L_{\infty }\) of the \(\acute{H}^{1}\)-projection into finite element spaces. Math. Comput. 157, 1–22 (1982)

    MATH  Google Scholar 

  16. Scott, R.: Optimal \(L_{\infty }\) estimates for the finite element method. Math. Comput. 30, 681–697 (1976)

    MATH  Google Scholar 

  17. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  18. Wang, J., Zhang, R.: Maximum principles for \(P_{1}\)- conforming finite element approximation of quasi-linear second order elliptic equations. SIAM J. Numer. Anal. 50(2), 626–642 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

HG is partially supported by National Natural Science Foundation of China under Grant Numbers 11871234 and 11971010. Weifeng Qiu is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302718).

Author information

Authors and Affiliations

Authors

Contributions

Huadong Gao and Weifeng Qiu have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, method, analysis and writing. All authors certify that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Weifeng Qiu.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Qiu, W. The Pointwise Stabilities of Piecewise Linear Finite Element Method on Non-obtuse Tetrahedral Meshes of Nonconvex Polyhedra. J Sci Comput 87, 53 (2021). https://doi.org/10.1007/s10915-021-01465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01465-4

Keywords

Mathematics Subject Classification

Navigation