Abstract
We consider a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. We use polynomials of degree \(k+1\), k, k and k for approximations of the velocity, the velocity gradient, the pressure and the boundary traces. Some stability results for approximate solutions and some relationships between norms are provided. Moreover an a posteriori error estimator is introduced. By \(L^2\)-projection and inf-sup condition, we prove that the error estimator is robust for the global \(L^2\) errors in the velocity, the velocity gradient and the pressure. Finally, a Picard iteration method and an adaptive HDG algorithm are presented. Furthermore, several numerical examples are shown to validate the theoretical analysis.
Similar content being viewed by others
References
Araya, R., Poza, A.H., Valentin, F.: An adaptive residual local projection finite element method for the Navier-Stokes equations. Adv. Comput. Math. 40, 1093–1119 (2014)
Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39, 1502–1528 (2019)
Araya, R., Solano, M., Vega, P.: A posteriori error analysis of an HDG method for the Oseen problem. Appl. Numer. Math. 146, 291–308 (2019)
Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)
Berrone, S.: Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 190, 4435–4455 (2001)
Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15, 736–754 (1978)
Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)
Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for steady-state incompressible Navier-Stokes equations. Math. Comput. 86, 1643–1670 (2017)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Cai, Z., Kanschat, G., Wang, C., Zhang, S.: Mixed finite element methods for incompressible flow: stationary Navier–Stokes equations. SIAM J. Numer. Anal. 48, 79–94 (2010)
Cai, Z., Kanschat, G., Wang, C., Zhang, S.: Mixed finite element methods for stationary Navier-Stokes equations based on pseudostree- pressure-velocity formulation. Math. Comput. 81, 1903–1927 (2012)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)
Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)
Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)
Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)
Cockburn, B., Zhang, W.: A posteriori error analysis for bybridizable discontinuous Galerkine methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)
Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)
Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)
Chen, G., Hu, W., Shen, J., Singler, J.R., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)
Chalmers, N., Agbaglah, G., Chrust, M., Mavriplis, C.: A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 2, 100023 (2019)
Dauge, M.:: Stationary Stokes and Navier–Stokes systems on two- and three-dimensional domains with corners. Part I. Linearized equatons. SIAM J. Math. Anal. 20, 27–52 (1989)
Durango, F., Novo, J.: A posteriori error estimations for mixed finite element approximations to the Navier–Stokes equations based on Newton-type linearization. J. Comput. Appl. Math. 367, 112429 (2020)
Farhloul, M., Nicaise, S., Paquet, L.: A refined mixed finite element method for Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21, 525–551 (2001)
Farhloul, M., Nicaise, S., Paquet, L.: A priori and a posteriori error estimations for the dual mixed fintie element method of the Navier–Stokes problem. Numer. Methods Part. Differ. Equ. 25, 843–869 (2009)
Frutos, J.G., Archilla, B., Novo, J.: A posteriori error estimations for mixed finite-element approximations to the Navier–Stokes equations. J. Comput. Appl. Math. 236, 1103–1122 (2011)
Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESIAM: M2AN, 49, 225-256 (2015)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5, Springer (1986)
Gong, W., Hu, W., Mateos, M., Singler, J., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity. SIAM J. Numer. Anal. 56, 2262–2287 (2018)
Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)
Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)
Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grid. Comput. Fluids 98, 209–220 (2014)
Hoppe, R.H.W., Sharma, N.: Convergence analysis of an adaptive interiori penalty discontinuous Galerkin method for Helmholtz equation. IMA J. Numer. Anal. 33, 898–921 (2013)
Kirk, K.L.A., Rhebergen, S.: Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81, 881–897 (2019)
Karakashian, O.A., Jureidini, W.N.: A nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)
Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)
Kanschat, G., Schötzau, D.: Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57, 1093–1113 (2008)
Larson, M.G., Moalqvist, A.: A posteriori error estimate for mixed finite element approximation of elliptic problems. Numer. Math. 108, 487–500 (2008)
Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86, 1553–1577 (2017)
Leng, H., Chen, Y.: Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems. Adv. Comput. Math. 46, 50 (2020)
Leng, H., Chen, Y.: Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. arXiv: 2004.09319, (2020)
Montlaur, A.de, Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. International Journal for Numerical Methods in Fluids, 579, 1071-1092 (2008)
Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)
Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)
Panourgias, K.T., Ekaterinaris, J.A.: A discontinuous Galerkin approach for high-resolution simulations of three-dimensional flows. Comput. Methods Appl. Mech. Eng. 299, 245–282 (2016)
Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedrel meshes. IMA J. Numer. Anal. 36, 1943–1967 (2016)
Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)
Schwab, C.: p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, Oxford University Press (1998)
Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80, 1058–1092 (2009)
Temam, R.: Navier-Stokes equations, 3rd edn. Elsevier Science Publishers B. V, Amsterdam (1984)
Verfürth, R.: Robust a posteriori error estimates for stationary convection diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of Haitao Leng was supported by the Cultivation Project of SCNU (Grant No. 19KJ08) and the NSF of China (Grant No. 12001209).
Rights and permissions
About this article
Cite this article
Leng, H. Adaptive HDG Methods for the Steady-State Incompressible Navier–Stokes Equations. J Sci Comput 87, 37 (2021). https://doi.org/10.1007/s10915-021-01456-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01456-5
Keywords
- Incompressible Navier–Stokes equation
- A posteriori error analysis
- Picard iteration method
- HDG
- Adaptive method