Skip to main content
Log in

Adaptive HDG Methods for the Steady-State Incompressible Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. We use polynomials of degree \(k+1\), k, k and k for approximations of the velocity, the velocity gradient, the pressure and the boundary traces. Some stability results for approximate solutions and some relationships between norms are provided. Moreover an a posteriori error estimator is introduced. By \(L^2\)-projection and inf-sup condition, we prove that the error estimator is robust for the global \(L^2\) errors in the velocity, the velocity gradient and the pressure. Finally, a Picard iteration method and an adaptive HDG algorithm are presented. Furthermore, several numerical examples are shown to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Araya, R., Poza, A.H., Valentin, F.: An adaptive residual local projection finite element method for the Navier-Stokes equations. Adv. Comput. Math. 40, 1093–1119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39, 1502–1528 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Araya, R., Solano, M., Vega, P.: A posteriori error analysis of an HDG method for the Oseen problem. Appl. Numer. Math. 146, 291–308 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berrone, S.: Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 190, 4435–4455 (2001)

    Article  MathSciNet  Google Scholar 

  6. Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for steady-state incompressible Navier-Stokes equations. Math. Comput. 86, 1643–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Cai, Z., Kanschat, G., Wang, C., Zhang, S.: Mixed finite element methods for incompressible flow: stationary Navier–Stokes equations. SIAM J. Numer. Anal. 48, 79–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Kanschat, G., Wang, C., Zhang, S.: Mixed finite element methods for stationary Navier-Stokes equations based on pseudostree- pressure-velocity formulation. Math. Comput. 81, 1903–1927 (2012)

    Article  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Zhang, W.: A posteriori error analysis for bybridizable discontinuous Galerkine methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, G., Hu, W., Shen, J., Singler, J.R., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chalmers, N., Agbaglah, G., Chrust, M., Mavriplis, C.: A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 2, 100023 (2019)

    MathSciNet  Google Scholar 

  21. Dauge, M.:: Stationary Stokes and Navier–Stokes systems on two- and three-dimensional domains with corners. Part I. Linearized equatons. SIAM J. Math. Anal. 20, 27–52 (1989)

    Article  Google Scholar 

  22. Durango, F., Novo, J.: A posteriori error estimations for mixed finite element approximations to the Navier–Stokes equations based on Newton-type linearization. J. Comput. Appl. Math. 367, 112429 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhloul, M., Nicaise, S., Paquet, L.: A refined mixed finite element method for Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21, 525–551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farhloul, M., Nicaise, S., Paquet, L.: A priori and a posteriori error estimations for the dual mixed fintie element method of the Navier–Stokes problem. Numer. Methods Part. Differ. Equ. 25, 843–869 (2009)

    Article  MATH  Google Scholar 

  25. Frutos, J.G., Archilla, B., Novo, J.: A posteriori error estimations for mixed finite-element approximations to the Navier–Stokes equations. J. Comput. Appl. Math. 236, 1103–1122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESIAM: M2AN, 49, 225-256 (2015)

  27. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5, Springer (1986)

  28. Gong, W., Hu, W., Mateos, M., Singler, J., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity. SIAM J. Numer. Anal. 56, 2262–2287 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  31. Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grid. Comput. Fluids 98, 209–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoppe, R.H.W., Sharma, N.: Convergence analysis of an adaptive interiori penalty discontinuous Galerkin method for Helmholtz equation. IMA J. Numer. Anal. 33, 898–921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kirk, K.L.A., Rhebergen, S.: Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81, 881–897 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karakashian, O.A., Jureidini, W.N.: A nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kanschat, G., Schötzau, D.: Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Int. J. Numer. Meth. Fluids 57, 1093–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Larson, M.G., Moalqvist, A.: A posteriori error estimate for mixed finite element approximation of elliptic problems. Numer. Math. 108, 487–500 (2008)

    Article  MathSciNet  Google Scholar 

  38. Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86, 1553–1577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leng, H., Chen, Y.: Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems. Adv. Comput. Math. 46, 50 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leng, H., Chen, Y.: Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. arXiv: 2004.09319, (2020)

  41. Montlaur, A.de, Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. International Journal for Numerical Methods in Fluids, 579, 1071-1092 (2008)

  42. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Panourgias, K.T., Ekaterinaris, J.A.: A discontinuous Galerkin approach for high-resolution simulations of three-dimensional flows. Comput. Methods Appl. Mech. Eng. 299, 245–282 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedrel meshes. IMA J. Numer. Anal. 36, 1943–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schwab, C.: p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, Oxford University Press (1998)

  48. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80, 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Temam, R.: Navier-Stokes equations, 3rd edn. Elsevier Science Publishers B. V, Amsterdam (1984)

  50. Verfürth, R.: Robust a posteriori error estimates for stationary convection diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Leng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Haitao Leng was supported by the Cultivation Project of SCNU (Grant No. 19KJ08) and the NSF of China (Grant No. 12001209).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, H. Adaptive HDG Methods for the Steady-State Incompressible Navier–Stokes Equations. J Sci Comput 87, 37 (2021). https://doi.org/10.1007/s10915-021-01456-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01456-5

Keywords

Mathematics Subject Classification

Navigation