Assessment of Upwind/Symmetric WENO Schemes for Direct Numerical Simulation of Screech Tone in Supersonic Jet


Screech tones are the high intensity shock-associated noise with discrete frequency in imperfectly supersonic jet. Accuracte numerical simulation of shock-associated noise requires numerical scheme with high order accuracy, low dissipation and low dispersion as well as robust shock-capturing ability. The applicability of eight kinds of upwind/symmetric WENO schemes for the direct numerical simulation of screech tone is evaluated through comparison study on the spectral characteristics and direct numerical simulations of underexpanded supersonic cold jet issuing from circular sonic nozzle. The spectral characteristics based on the approximate dispersion relation shows that the adaptive central-upwind (WENO-SYMCU-6) scheme has the best resolution and the minimum value of point-per-wavelength. However, the comparison of nonlinear response indicates that the improved upwind WENO-ZM-5 (\(p=1\)) scheme has almost the weakest nonlinear response for the single Fourier mode. And the performances in the direct numerical simulations also show that the WENO-ZM-5 (\(p=1\)) scheme is the best. With this method, not only the screech tones of the high amplitude axisymmetric mode are obtained, but also a variety of high-frequency coupling modes with the highest amplitudes can be distinguished in a wider spectrum range. And there is no nonphysical high-frequency wave induced by the nonlinear implementation of WENO schemes at the near region of the nozzle exit lip.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3101–3211 (2008)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory weno-z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Colonius, T., Lele, S.K., Moin, P.: Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31(9), 1574–1582 (1993)

    Article  Google Scholar 

  4. 4.

    Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  Google Scholar 

  6. 6.

    Edgington-Mitchell, D.: Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets-a review. Int. J. Aeroacoustics 18(2–3), 118–188 (2019)

    Article  Google Scholar 

  7. 7.

    Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (2005)

    Article  Google Scholar 

  8. 8.

    Gao, J.H., Li, X.D.: Large eddy simulation of supersonic jet noise from a circular nozzle. Int. J. Aeroacoustics 10(4), 465–474 (2011)

    Article  Google Scholar 

  9. 9.

    Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  10. 10.

    Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lardjane, N.: Étude théorique et numérique des écoulements cisaillés libres à masse volumique fortement variable. Ph.D. thesis, Université d’Orléans (2002).

  13. 13.

    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Li, Q., Guo, Q.L., Sun, D., Liu, P.X., Zhang, H.X.: A fourth-order symmetric weno scheme with improved performance by new linear and nonlinear optimizations. J. Sci. Comput. 71, 109–143 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Li, X.D., Gao, J.H.: Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones. Phys. Fluids 17(085105), 1–8 (2005)

    MATH  Google Scholar 

  16. 16.

    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Loh, C.Y., Hultgren, L.S., Jorgenson, P.C.E.: Near field screech noise computation for an underexpanded supersonic jet by the ce/se method. In: AIAA-2001-2252(also NASA/TM-2001-210958) 7th AIAA/CEAS Aeroacoustics Conference(22th AIAA Aeroacoustics Conference), Maastricht, The Netherlands, May 28–30, pp. 1–10 (2001)

  18. 18.

    Martin, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  Google Scholar 

  19. 19.

    Nathan, J.M., Datta, V.G.: A bandwidth and order optimized weno interpolation scheme for compressible turbulent flows. In: AIAA paper, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 4–7 January 2011, Orlando, Florida. AIAA-2011-0366, pp. 1–18 (2011)

  20. 20.

    Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006)

    Article  Google Scholar 

  21. 21.

    Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Ponton, M.K., Seiner, J.M.: The effects of nozzle exit lip thickness on plume resonance. J. Sound Vib. 154, 531–549 (1992)

    Article  Google Scholar 

  24. 24.

    Ponziani, D., Pirozzoli, S., Grasso, F.: Development of optimized weighted-eno schemes for multiscale compressible flows. Int. J. Numer. Methods Fluids 42, 953–977 (2003)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Powell, A.: The noise of choked jets. J. Acoust. Soc. Am. 25, 385–389 (1953)

    Article  Google Scholar 

  26. 26.

    Powell, A.: On the mechanism of choked jet noise. Proc. Phys. Soc. London 66, 1039–1056 (1953)

    Article  Google Scholar 

  27. 27.

    Raman, G.: Advances in understanding supersonic jet screech: review and perspective. Prog. Aerosp. Sci. 34, 45–106 (1998)

    Article  Google Scholar 

  28. 28.

    Raman, G.: Supersonic jet screech: Half-century from powell to the present. J. Sound Vib. 225(3), 543–571 (1999)

    Article  Google Scholar 

  29. 29.

    Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE Report No. 97-65, pp. 1–79 (1997)

  30. 30.

    Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 17–43 (1995)

    Article  Google Scholar 

  32. 32.

    Tam, C.K.W.: Advances in numerical boundary condtions for computational aeroacoustics. J. Comput. Acoust. 6(4), 377–402 (1998)

    Article  Google Scholar 

  33. 33.

    Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems, ii. J. Comput. Phys. 89, 439–461 (1990)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Van Leer, B.: Flux vector splitting for the euler equations. ICASE Rep. 82–30, 507–512 (1982)

    Google Scholar 

  37. 37.

    Wang, Z.J., Chen, R.F.: Optimized weighted essentially non-oscillatory schemes for linear waves with discontinuity. J. Comput. Phys. 174, 381–404 (2001)

    Article  Google Scholar 

  38. 38.

    Weirs, V.G., Candler, G.V.: Optimization of weighted eno schemes for dns of compressible turbulence. In: AIAA paper, 13th Computational Fluid Dynamics Conference, 1997 AIAA-1997-1940, pp. 1–11 (1997)

  39. 39.

    Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy-stable weno schemes. J. Comput. Phys. 228, 4248–4272 (2009)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Zhao, S., Lardjane, N., Fedioun, I.: Comparison of improved finite-difference weno schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Comput. Fluids 95, 74–87 (2014)

    MathSciNet  Article  Google Scholar 

Download references


This research was partially supported by the National Numerical Windtunnel project. Research of the third author is supported by the Chinese National Natural Science Foundation with the Grant No. 11732016 and Sichuan Science and Technology Program with the Grant No. 2018JZ0076.

Author information



Corresponding author

Correspondence to Shuhai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Luo, Y. & Zhang, S. Assessment of Upwind/Symmetric WENO Schemes for Direct Numerical Simulation of Screech Tone in Supersonic Jet. J Sci Comput 87, 3 (2021).

Download citation


  • Computational aero-acoustics
  • WENO
  • Screech tone
  • Shock-associated noise
  • Underexpanded supersonic jet