Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo–Hadamard Fractional Partial Differential Equation

Abstract

In this paper, we study the Caputo–Hadamard fractional partial differential equation where the time derivative is the Caputo–Hadamard fractional derivative and the space derivative is the integer-order one. We first introduce a modified Laplace transform. Then using the newly defined Laplace transform and the well-known finite Fourier sine transform, we obtain the analytical solution to this kind of linear equation. Furthermore, we study the regularity and logarithmic decay of its solution. Since the equation has a time fractional derivative, its solution behaves a certain weak regularity at the initial time. We use the finite difference scheme on non-uniform meshes to approximate the time fractional derivative in order to guarantee the accuracy and use the local discontinuous Galerkin method (LDG) to approximate the spacial derivative. The fully discrete scheme is established and analyzed. A numerical example is displayed which support the theoretical analysis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Springer, Switzerland (2017)

    Google Scholar 

  2. 2.

    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amserdam (1978)

    Google Scholar 

  3. 3.

    Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71, 455–478 (2002)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman and Hall/CRC, Boca Raton (2007)

    Google Scholar 

  6. 6.

    Du, Y.W., Liu, Y., Li, H., Fang, Z.C., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108–126 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gohar, M., Li, C.P., Yin, C.T.: On Caputo–Hadamard fractional differential equations. Int. J. Comput. Math. 97, 1459–1483 (2020)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gohar, M., Li, C.P., Li, Z.Q.: Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterr. J. Math. 17, 194 (2020)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 102, 333–338 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hadamard, J.: Essai sur létude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 8, 101–186 (1892)

    MATH  Google Scholar 

  11. 11.

    Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. S 13, 709–722 (2020)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  15. 15.

    Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2019)

    Google Scholar 

  16. 16.

    Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis. Appl. Numer. Math. 140, 1–22 (2019)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Li, C.P., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: mathematical analysis. Appl. Numer. Math. 150, 587–606 (2020)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Li, C.P., Wang, Z.: The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simulat. 169, 51–73 (2020)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Li, C.P., Li, Z.Q.: Asymptotic behaviors of solution to Caputo–Hadamard fractional partial differential equation with fractional Laplacian. Int. J. Comput. Math. (2020). https://doi.org/10.1080/00207160.2020.1744574

    Article  Google Scholar 

  20. 20.

    Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Liu, Y., Yan, Y., Khan, M.: Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations. Appl. Numer. Math. 115, 200–213 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Ma, L.: On the kinetics of Hadamard-type fractional defferential systems. Fract. Calc. Appl. Anal. 23, 553–570 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ma, L., Li, C.P.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  26. 26.

    Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    Google Scholar 

  28. 28.

    Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Wei, L.L., He, Y.N.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Xu, Q.W., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China under Grant No. 11872234.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Z. & Wang, Z. Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo–Hadamard Fractional Partial Differential Equation. J Sci Comput 85, 41 (2020). https://doi.org/10.1007/s10915-020-01353-3

Download citation

Keywords

  • Caputo–Hadamard derivative
  • Regularity
  • Finite difference scheme on non-uniform meshes
  • Local discontinuous Galerkin method
  • Stability and convergence

Mathematics Subject Classification

  • 26A33
  • 35B65
  • 65M12