Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations

Abstract

The solutions of the nonlinear time fractional parabolic problems usually undergo dramatic changes at the beginning. In order to overcome the initial singularity, the temporal discretization is done by using the Alikhanov schemes on the nonuniform meshes. And the spatial discretization is achieved by using the finite element methods. The optimal error estimates of the fully discrete schemes hold without certain time-step restrictions dependent on the spatial mesh sizes. Such unconditionally optimal convergent results are proved by taking the global behavior of the analytical solutions into account. Numerical results are presented to confirm the theoretical findings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Alquran, M., Khaled, K.A., Sardar, T., Chattopadhyay, J.: Revisited Fishers equation in a new outlook: a fractional derivative approach. Phys. A. 438, 81–93 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Vabishchevich, P.N., Samarskij, A.A., Matus, P.P.: Second-order accurate finite-difference schemes on nonuniform grids. Comput. Math. Math. Phys. 38(3), 413–424 (1998)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Methods Appl. (2021). https://doi.org/10.4208/nmtma.OA-2020-0129

    Article  Google Scholar 

  7. 7.

    Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. Commun. Comput. Phys. 24(4), 1143–1168 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Gunarathna, W.A., Nasir, H.M., Daundasekera, W.B.: An explicit form for higher order approximations of fractional derivatives. Appl. Numer. Math. 143, 51–60 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Li, D., Liao, H., Wang, J., Sun, W., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24(1), 86–103 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Meng, X., Stynes, M.: Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions. Adv. Comput. Math. 45(2), 1105–1128 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Liu, Y., Zhang, M., Li, H., Li, J.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298–1314 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Liao, H., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp. 88, 2135–2155 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80, 957–992 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Li, L., Li, D.: Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79(1), 624–647 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Zhou, B., Li, D.: Newton linearized methods for semilinear parabolic equations. Numer. Math. Theor. Methods Appl. 13, 928–945 (2020)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)

    MATH  Google Scholar 

  32. 32.

    Maskari, M.A., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth intial data. SIAM J. Numer. Anal. 57, 1524–1544 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Liao, H., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem (2019). https://arxiv.org/pdf/1803.09873.pdf

  35. 35.

    Thome, V.: Galerkin finite element methods for parabolic problems. J. Comput. Math. Appl. 17(2), 186–187 (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongfang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant Nos. 11771162, 11971010).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Chen, X. & Li, D. Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations. J Sci Comput 85, 39 (2020). https://doi.org/10.1007/s10915-020-01350-6

Download citation

Keywords

  • Nonlinear time-fractional parabolic equations
  • Alikhanov scheme
  • Nonuniform meshes
  • Unconditional error estimates