A Discontinuous Galerkin Method for the Coupled Stokes and Darcy Problem


Combining the mixed discontinuous Galerkin method for the Darcy flow and the interior penalty discontinuous Galerkin methods for the Stokes problem, a locally conservative discrete scheme is proposed for numerically solving the coupled Stokes and Darcy problem. We prove the well-posedness of the solution of the proposed numerical scheme by boundedness, K-ellipticity and a discrete inf-sup condition. A priori error estimates, in proper norms are derived, and to verify the theoretical analysis, some numerical experiments are given.

This is a preview of subscription content, log in to check access.

Fig. 1

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.


  1. 1.

    Cesmelioglu, A., Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin method for the coupled Stokes–Darcy system. J. Comput. Appl. Math. (2019). https://doi.org/10.1016/j.cam.2019.112476

    Article  MATH  Google Scholar 

  2. 2.

    Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Google Scholar 

  3. 3.

    Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22–23(1–3), 479–500 (2005)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flow. SIAM. J. Numer. Anal. 42(5), 1959–1977 (2005)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM. J. Numer. Anal. 35, 2440–2463 (1998)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the stokes systems. SIAM J. Numer. Anal. 1, 319–343 (2002)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Google Scholar 

  11. 11.

    Jing, F.F., Han, W., Yan, W.J., Wang, F.: Discontinuous Galerkin methods for a stationary Navier–Stokes problem with a nonlinear slip boundary condition of friction type. J. Sci. Comput. 76, 888–912 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Wang, F., Wu, S., Xu, J.: A mixed discontinuous Galerkin method for linear elasticity with strongly imposed symmetry. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-020-01191-3

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Vivette, G., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Safeman interface condition. SIAM. J. Numer. Anal. 47(3), 2052–2089 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally impermeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  15. 15.

    Kanschat, G., Rivière, B.: A strongly conservative finite element methood for the coupling Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2018)

    Article  Google Scholar 

  16. 16.

    Fu, G., Lehrenfeld, C.: A strongly conservative Hybrid DG\(\setminus \)Mixed FEM for the coupling Stokes and Darcy flow. J. Sci. Comput. 77, 1605–1620 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 1, 1–41 (2017)

    MATH  Google Scholar 

  18. 18.

    Hou, J.Y., Qiu, M.L., He, X.M., et al.: A dual-porosity-Stokes model and finite element method for coupling dual-porosity flow and free flow. SIAM J. Sci. Comput. 38, B710–B739 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. T. Numer. Ana. 26(29), 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, New York (1972)

    Google Scholar 

  21. 21.

    Shan, L., Hou, J.Y., Yan, W.J., Chen, J.: Partitioned time stepping method for a dual-porosity-Stokes Model. J. Sci. Comput. 79(1), 389–413 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  23. 23.

    Adams, R.A.: Sobolev Spaces. Academic Press, New York (2003)

    Google Scholar 

  24. 24.

    Girult, R., Rivière, B., Wheeler, M.: A discontinuous Galerkin method with non-overlapping domain decompsition for the Stokes and Navier-Stokes problems. Math. Comp. 74, 53–84 (2004)

    Article  Google Scholar 

  25. 25.

    Raviart, R.A., Thomas, J.M.: A Mixed Finite Element Method for Second Order Elliptic Problems. In Mathematical Aspects of Finite Element Methods, Lecture Notes in Math, p. 606, Springer-Verlag, New York, (1977)

  26. 26.

    Brenner, S.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comp. 73, 1067–1087 (2004)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM. J. Numer. Anal. 40, 2195–2218 (2003)

    MathSciNet  Article  Google Scholar 

Download references


We would like to acknowledge the financial support from the National Natural Science Foundation of China Grant No.11771348, 11971378, 51876170.

Author information



Corresponding author

Correspondence to Hongbin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Su, J., He, Y. et al. A Discontinuous Galerkin Method for the Coupled Stokes and Darcy Problem. J Sci Comput 85, 26 (2020). https://doi.org/10.1007/s10915-020-01342-6

Download citation


  • Stokes and Darcy problem
  • Discontinuous Galerkin methods
  • Priori error estimates