POD-(H)DG Method for Incompressible Flow Simulations


We present a reduced order method based on proper orthogonal decomposition for the viscous Burgers’ equation and the incompressible Navier–Stokes equations discretized using an implicit-explicit hybrid discontinuous Galerkin/discoutinuous Galerkin (IMEX HDG/DG) scheme. A novel closure model, which can be easily computed offline, is introduced. Numerical results are presented to test the proposed POD model and the closure model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data Availibility Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request


  1. 1.

    Antonietti, P.F., Pacciarini, P., Quarteroni, A.: A discontinuous Galerkin reduced basis element method for elliptic problems. ESAIM: Math. Model. Numer. Anal. 50, 337–360 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Antoulas, A.: Approximation of large-scale dynamical systems. In: Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), vol. 6. Philadelphia, PA (2005)

  3. 3.

    Antoulas, A., Beattie, C., Güğercin, S.: Interpolatory methods for model reduction. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA (2020)

  4. 4.

    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 102, 1136–1161 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Caiazzo, A., Iliescu, T., John, V., Schyschlowa, S.: A numerical investigation of velocity-pressure reduced order models for incompressible flows. J. Comput. Phys. 259, 598–616 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 129–177. Springer, Cham (2016)

    Google Scholar 

  12. 12.

    Fareed, H., Singler, J.R., Zhang, Y., Shen, J.: Incremental proper orthogonal decomposition for PDE simulation data. Comput. Math. Appl. 75, 1942–1960 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Gunzburger, M.D.: Perspectives in flow control and optimization. In: Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), vol. 5. Philadelphia, PA (2003)

  14. 14.

    Hesthaven, J.S., Rozza, G., Stamm, B., et al.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590. Springer, Cham (2016)

    Google Scholar 

  15. 15.

    Lehrenfeld, C.: Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis, MathCCES/IGPM, RWTH Aachen (2010)

  16. 16.

    Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nigro, P.S.B., Anndif, M., Teixeira, Y., Pimenta, P.M., Wriggers, P.: An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems. Comput. Mech. 57, 537–554 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Peherstorfer, B., Willcox, K.: Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92. Springer, Cham (2015)

    Google Scholar 

  20. 20.

    San, O., Iliescu, T.: Proper orthogonal decomposition closure models for fluid flows: Burgers equation. Int. J. Numer. Anal. Model. Ser. B 5, 217–237 (2014)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol. 48, pp. 547–566 (1996)

  22. 22.

    Schöberl, J.: C\(++\)11 Implementation of finite elements in NGSolve. ASC Report 30/2014, Vienna University of Technology, Institute for Analysis and Scientific Computing (2014)

  23. 23.

    Shen, J., Singler, J.R., Zhang, Y.: HDG-POD reduced order model of the heat equation. J. Comput. Appl. Math. 362, 663–679 (2019)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Uzunca, M., Karasözen, B.: Energy stable model order reduction for the Allen–Cahn equation. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, vol. 17, pp. 403–419. Springer (2017)

  26. 26.

    Wang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear parabolic equations. Numer. Methods Part. Differ. Equ. 31, 1713–1741 (2015)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yano, M.: Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws. Adv. Comput. Math. 45, 2287–2320 (2019)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Guosheng Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guosheng Fu gratefully acknowledges the partial support of this work from U.S. National Science Foundation through Grant DMS-2012031. Zhu Wang gratefully acknowledges the partial support of this work from U.S. National Science Foundation through Grant DMS-1913073 and Office of the Vice President for Research at the University of South Carolina through an ASPIRE grant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Wang, Z. POD-(H)DG Method for Incompressible Flow Simulations. J Sci Comput 85, 24 (2020). https://doi.org/10.1007/s10915-020-01328-4

Download citation


  • HDG
  • DG
  • POD
  • Burgers’ equation
  • Navier–Stokes equations

Mathematics Subject Classification

  • 65N30
  • 65N12
  • 76S05
  • 76D07