Skip to main content
Log in

Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with numerical approximation of some two-dimensional Keller–Segel chemotaxis models, especially those generating pattern formations. The numerical resolution of such nonlinear parabolic–parabolic or parabolic–elliptic systems of partial differential equations consumes a significant computational time when solved with fully implicit schemes. Standard linearized semi-implicit schemes, however, require reasonable computational time, but suffer from lack of accuracy. In this work, two methods based on a single-layer neural network are developed to build linearized implicit schemes: a basic one called the each step training linearized implicit method and a more efficient one, the selected steps training linearized implicit method. The proposed schemes, which make use also of a spatial finite volume method with a hybrid difference scheme approximation for convection–diffusion fluxes, are first derived for a chemotaxis system arising in embryology. The convergence of the numerical solutions to a corresponding weak solution of the studied system is established. Then the proposed methods are applied to a number of chemotaxis models, and several numerical tests are performed to illustrate their accuracy, efficiency and robustness. Generalization of the developed methods to other nonlinear partial differential equations is straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  2. Painter, K.J.: Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Akhmouch, M., Benzakour Amine, M.: A time semi-exponentially fitted scheme for chemotaxis-growth models. Calcolo 54(2), 609–641 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Jüngel, A., Leingang, O.: Blow-up of solutions to semi-discrete parabolic-elliptic Keller–Segel models. Discrete Contin. Dyn. Syst. Ser. B 24, 609–641 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Huang, X., Xiao, X., Zhao, J., Feng, X.: An efficient operator-splitting FEM-FCT algorithm for 3D chemotaxis models. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00771-8

    Article  Google Scholar 

  6. Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Zhang, J.: The splitting mixed element method for parabolic equation and its application in chemotaxis model. Appl. Math. Comput. 313, 287–300 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, R., Zhu, J., Loula, A.F., Yu, X.: Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model. J. Comput. Appl. Math. 302, 312–326 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Liu, J.G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Math. Comput. 87(311), 1165–1189 (2018)

    MATH  Google Scholar 

  11. Li, X.H., Shu, C.W., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: A meshless technique based on the local radial basis functions collocation method for solving parabolic-parabolic Patlak-Keller-Segel chemotaxis model. Eng. Anal. Bound. Elem. 56, 129–144 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Oster, G.F., Murray, J.D.: Pattern formation models and developmental constraints. J. Expl. Zool. 251, 186–202 (1989)

    Google Scholar 

  15. Murray, J.D., Deeming, D.C., Ferguson, M.W.J.: Size-dependent pigmentation-pattern formation in embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. R. Soc. B 239, 279–293 (1990)

    Google Scholar 

  16. Akhmouch, M., Benzakour Amine, M.: A corrected decoupled scheme for chemotaxis models. J. Comput. Appl. Math. 323, 36–52 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239, 290–303 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Akhmouch, M., Benzakour Amine, M.: Semi-implicit finite volume schemes for a chemotaxis-growth model. Indag. Math. 27(3), 702–720 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Horstmann, D.: From 1970 until now: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105, 103–165 (2003)

    MATH  Google Scholar 

  22. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  24. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Diff. Eqn. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart. 10(4), 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Murray, J.D.: Mathematical Biology, vol. 2, 3rd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  28. Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller–Segel model. Numer. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27, 332–365 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Google Scholar 

  35. Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000)

    Google Scholar 

  36. Shirvany, Y., Hayati, M., Moradian, R.: Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl. Soft Comput. 9(1), 20–29 (2009)

    Google Scholar 

  37. Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)

    MATH  Google Scholar 

  38. Aminataei, A., Mazarei, M.M.: Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput. Math. Appl. 56(11), 2887–2895 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Netw. 16, 729–734 (2003)

    Google Scholar 

  40. Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50(2), 1153–1172 (2019)

    Google Scholar 

  41. Mall, S., Chakraverty, S.: Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process. Lett. 45(3), 825–840 (2017)

    Google Scholar 

  42. Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing. 155, 277–285 (2015)

    Google Scholar 

  43. Beidokhti, R.S., Malek, A.: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J. Franklin. Inst. 346(9), 898–913 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Volume VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  47. Spalding, D.B.: A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 4(4), 551–559 (1972)

    Google Scholar 

  48. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. Math. Mod. Numer. Anal. 37, 319–338 (2003)

    MathSciNet  MATH  Google Scholar 

  50. Yu, H., Wilamowski, B.M.: Levenberg–Marquardt training. Ind. Electron. Handb. 5(12), 1–12 (2011)

    Google Scholar 

  51. Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. In: IOP Conference Series: Materials Science and Engineering, vol. 495, no. 1, p. 012003. IOP Publishing (2019)

  52. Hayashi, Y., Sakata, M., Gallant, S. I.: Multi-layer versus single-layer neural networks and an application to reading hand-stamped characters. In: International Neural Network Conference, pp. 781–784. Springer, Dordrecht (1990)

  53. Al-kaf, H.A.G., Chia, K.S., Alduais, N.A.M.: A comparison between single layer and multilayer artificial neural networks in predicting diesel fuel properties using near infrared spectrum. Petr. Sci. Technol. 36(6), 411–418 (2018)

    Google Scholar 

  54. Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatio-temporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 2181–2189 (1995)

    Google Scholar 

  55. Thar, R., Kühl, M.: Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246(1), 75–79 (2005)

    Google Scholar 

  56. Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria. Nature 376, 49–53 (1995)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their constructive comments, which greatly improve the paper. The author would like to thank also Hamza Benzakour Amine and Meryeme Benzakour Amine for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benzakour Amine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzakour Amine, M. Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models. J Sci Comput 85, 4 (2020). https://doi.org/10.1007/s10915-020-01310-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01310-0

Keywords

Mathematics Subject Classification

Navigation