Skip to main content
Log in

Non-linear CFL Conditions Issued from the von Neumann Stability Analysis for the Transport Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a theory of the possible non-linear stability conditions encountered in the simulation of convection dominated problems. Its main objective is to study and justify original CFL-like stability conditions thanks to the von Neumann stability analysis. In particular, we exhibit a wide variety of stability conditions of the type \(\Delta t\le C \Delta x^\alpha \) with \(\Delta t\) the time step, \(\Delta x\) the space step, and \(\alpha \) a rational number within the interval [1, 2]. Numerical experiments corroborate these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  2. Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.): Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000)

    Google Scholar 

  3. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  4. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. (1967). Translation from a paper originally appeared in Mathematische Annalen 100, 32–74, (1928)

  5. Crouzeix, M., Mignot, A.L.: Analyse numérique des équations différentielles. Masson editor (1992)

  6. Deriaz, E.: Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations. SIAM J. Numer. Anal. 50(3), 1058–1085 (2012)

    Article  MathSciNet  Google Scholar 

  7. Deriaz, E., Desprès, B., Faccanoni, G., Gostaf, K.P., Imbert-Gérard, L.-M., Sadaka, G., Sart, R.: Magnetic equations with FreeFem++: the Grad–Shafranov equation & the current hole. ESAIM Proc. 32, 76–94 (2011)

    Article  MathSciNet  Google Scholar 

  8. Deriaz, E., Kolomenskiy, D.: Stabilité sous condition CFL non linéaire. ESAIM Proc. 35, 114–121 (2012)

    Article  Google Scholar 

  9. Deriaz, E., Perrier, V.: Direct numerical simulation of turbulence using divergence-free wavelets. SIAM Multiscale Model. Simul. 7(3), 1101–1129 (2008)

    Article  MathSciNet  Google Scholar 

  10. Gallinato, O., Poignard, C.: Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation. J. Comput. Phys. 339, 412–431 (2017)

    Article  MathSciNet  Google Scholar 

  11. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996)

    Book  Google Scholar 

  12. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, vol. 38. Springer, Berlin (2008)

    Google Scholar 

  13. Grote, M.J., Mehlin, M., Mitkova, T.: Methods and algorithms for scientific computing Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37(2), A747–A775 (2015)

    Article  Google Scholar 

  14. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1987). Second revised edition 1993

    MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991). Second revised edition 1996

    MATH  Google Scholar 

  16. Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)

    MathSciNet  MATH  Google Scholar 

  17. Kolmogorov, A.N., Yushkevich, A.P. (eds.): Mathematics of the 19th Century, vol. 3 (1998)

  18. Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40(1), 40–73 (1998)

    Article  MathSciNet  Google Scholar 

  19. Mohan Rai, M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96(1), 15–53 (1991)

    Article  Google Scholar 

  20. Peyret, R.: Spectral Methods for Incompressible Viscous Flow, vol. 148. Springer, Berlin (2002)

    Book  Google Scholar 

  21. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)

    MATH  Google Scholar 

  22. Trefethen, L.N.: Finite difference and spectral methods for ordinary and partial differential equations. Unpublished text (1996). http://people.maths.ox.ac.uk/trefethen/pdetext.html

  23. Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187(1), 343–368 (2003)

    Article  MathSciNet  Google Scholar 

  24. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  Google Scholar 

  25. Yuan, X., Zhang, Q., Shu, C., Wang, H.: The L\(^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Deriaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deriaz, E., Haldenwang, P. Non-linear CFL Conditions Issued from the von Neumann Stability Analysis for the Transport Equation. J Sci Comput 85, 5 (2020). https://doi.org/10.1007/s10915-020-01302-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01302-0

Keywords

Mathematics Subject Classification

Navigation