Skip to main content
Log in

Stability of Linear Multistep Time Iterations with the WENO5 Discretization at Discontinuities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The linear stability analysis on the WENO5 spatial discretization for solving the one-dimensional linear advection equation, combined with various fifth-order multistep methods, was presented in Motamed et al. (J Sci Comput 47(2):127–149, 2011). The purpose of this work is to further investigate the mechanism of oscillations observed in these time integrators when simulating shock front propagation. In particular, extrapolated backward differentiation formula (eBDF5), explicit Adams methed (Adams5) and a predictor–corrector method (PC5) are selected for detailed performance comparison. We first analyze how the non-convex combinations involved in these multistep methods restrict the time step-size and lead to possible pointwise oscillations. Subsequently, the nonlinear weights in the WENO5 scheme are used as indicators to capture the evolution of discontinuities with time and determine the stability of the multistep methods. Numerical results are also provided to confirm the analysis and review the qualifications of these multistep methods for shock front tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Glimm, T., Bhat, R., Newman, S.A.: Modeling the morphodynamic galectin patterning network of the developing avian limb skeleton. J. Theor. Biol. 346, 86–108 (2014)

    Article  Google Scholar 

  2. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comp. 67, 73–85 (1998)

    Article  MathSciNet  Google Scholar 

  3. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  4. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  5. Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion–reaction equations. J. Comput. Phys. 253, 368–388 (2013)

    Article  MathSciNet  Google Scholar 

  6. Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection–diffusion–reaction equations. J. Comput. Phys. 311, 22–44 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)

    Article  MathSciNet  Google Scholar 

  8. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  9. Qiu, J.-X., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff type time discretization. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)

    Article  MathSciNet  Google Scholar 

  10. Motamed, M., Macdonald, C.B., Ruuth, S.J.: On the linear stability of the fifth-order WENO Discretization. J. Sci. Comput. 47(2), 127–149 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209(1), 226–248 (2005)

    Article  MathSciNet  Google Scholar 

  12. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. 9, 1073–1084 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Shu, C.-W.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, pp. 97–65. ICASE Report Brown University (1997)

  14. Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  Google Scholar 

  15. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  16. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)

    Article  MathSciNet  Google Scholar 

  17. Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45(5), 1871–1901 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Stability of Linear Multistep Time Iterations with the WENO5 Discretization at Discontinuities. J Sci Comput 84, 48 (2020). https://doi.org/10.1007/s10915-020-01300-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01300-2

Keywords

Navigation