Skip to main content
Log in

Relaxation Runge–Kutta Methods for Hamiltonian Problems

Journal of Scientific Computing Aims and scope Submit manuscript

Cite this article

Abstract

The recently-introduced relaxation approach for Runge–Kutta methods can be used to enforce conservation of energy in the integration of Hamiltonian systems. We study the behavior of implicit and explicit relaxation Runge–Kutta methods in this context. We find that, in addition to their useful conservation property, the relaxation methods yield other improvements. Experiments show that their solutions bear stronger qualitative similarity to the true solution and that the error grows more slowly in time. We also prove that these methods are superconvergent for a certain class of Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996). https://doi.org/10.1145/235815.235821

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogacki, P., Shampine, L.F.: An efficient Runge–Kutta (4,5) pair. Comput. Math. Appl. 32(6), 15–28 (1996). https://doi.org/10.1016/0898-1221(96)00141-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2016). https://doi.org/10.1002/9781119121534

    Book  MATH  Google Scholar 

  5. Calvo, M., Hernández-Abreu, D., Montijano, J.I., Rández, L.: On the preservation of invariants by explicit Runge–Kutta methods. SIAM J. Sci. Comput. 28(3), 868–885 (2006). https://doi.org/10.1137/04061979X

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvo, M., Laburta, M., Montijano, J., Rández, L.: Projection methods preserving Lyapunov functions. BIT Numer. Math. 50(2), 223–241 (2010). https://doi.org/10.1007/s10543-010-0259-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvo, M., Laburta, M., Montijano, J.I., Rández, L.: Error growth in the numerical integration of periodic orbits. Math. Comput. Simul. 81(12), 2646–2661 (2011). https://doi.org/10.1016/j.matcom.2011.05.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvo, M.P., Sanz-Serna, J.M.: The development of variable-step symplectic integrators, with application to the two-body problem. SIAM J. Sci. Comput. 14(4), 936–952 (1993). https://doi.org/10.1137/0914057

    Article  MathSciNet  MATH  Google Scholar 

  9. Cano, B., Lewis, H.R.: A comparison of symplectic and Hamilton’s principle algorithms for autonomous and non-autonomous systems of ordinary differential equations. Appl. Numer. Math. 39(3–4), 289–306 (2001). https://doi.org/10.1016/S0168-9274(00)00037-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Cano, B., Sanz-Serna, J.M.: Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems. SIAM J. Numer. Anal. 34(4), 1391–1417 (1997). https://doi.org/10.1137/S0036142995281152

    Article  MathSciNet  MATH  Google Scholar 

  11. Cooper, G.: Stability of Runge–Kutta methods for trajectory problems. IMA J. Numer. Anal. 7(1), 1–13 (1987). https://doi.org/10.1093/imanum/7.1.1

    Article  MathSciNet  MATH  Google Scholar 

  12. De Frutos, J., Sanz-Serna, J.M.: Accuracy and conservation properties in numerical integration: the case of the Korteweg–de Vries equation. Numer. Math. 75(4), 421–445 (1997). https://doi.org/10.1007/s002110050247

    Article  MathSciNet  MATH  Google Scholar 

  13. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs, vol. 2. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  14. Fehlberg, E.: Low-order classical Runge–Kutta formulas with stepsize control and their application to some heat transfer problems. Technical Report NASA TR R-315, NASA, NASA George C. Marshall Space Flight Center, Marshall Ala. USA (1969)

  15. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449 (1996). https://doi.org/10.1007/BF02440162

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hairer, E., Lubich, C.: Energy behaviour of the Boris method for charged-particle dynamics. BIT Numer. Math. 58(4), 969–979 (2018). https://doi.org/10.1007/s10543-018-0713-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  20. Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi–Imada method. ESAIM Math. Model. Numer. Anal. 43(4), 631–644 (2009). https://doi.org/10.1051/m2an/2009019

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78862-1

    Book  MATH  Google Scholar 

  22. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05221-7

    Book  MATH  Google Scholar 

  23. Heun, K.: Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen Veränderlichen. Z. Math. Phys. 45, 23–38 (1900)

    MATH  Google Scholar 

  24. Iserles, A., Zanna, A.: Preserving algebraic invariants with Runge–Kutta methods. J. Comput. Appl. Math. 125(1–2), 69–81 (2000). https://doi.org/10.1016/S0377-0427(00)00459-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Ketcheson, D.I.: Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019). https://doi.org/10.1137/19M1263662. arXiv:1905.09847 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  26. Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  27. McLachlan, R.I., Quispel, G., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999). https://doi.org/10.1098/rsta.1999.0363

    Article  MathSciNet  MATH  Google Scholar 

  28. Nørsett, S.P.: Semi-explicit Runge–Kutta methods. Report Mathematics and Computation 4/74, Department of Mathematics, University of Trondheim, Norway (1974)

  29. Portillo, A., Sanz-Serna, J.M.: Lack of dissipativity is not symplecticness. BIT Numer. Math. 35(2), 269–276 (1995). https://doi.org/10.1007/BF01737166

    Article  MathSciNet  MATH  Google Scholar 

  30. Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981). https://doi.org/10.1016/0771-050X(81)90010-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Quispel, G., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A Math. Theor. 41(4), 045,206 (2008). https://doi.org/10.1088/1751-8113/41/4/045206

    Article  MathSciNet  MATH  Google Scholar 

  32. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)

  33. Ranocha, H.: Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547–563 (2019). https://doi.org/10.1007/s10543-018-0736-7. arXiv:1805.09126 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  34. Ranocha, H.: On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/drz070. arXiv:1811.11601 [math.NA]

    Article  Google Scholar 

  35. Ranocha, H., Ketcheson, D.I.: Energy stability of explicit Runge-Kutta methods for non-autonomous or nonlinear problems (2019). arXiv:1909.13215 [math.NA]

  36. Ranocha, H., Ketcheson, D.I.: Hamiltonian-RRK-notebooks. Relaxation Runge–Kutta methods for Hamiltonian problems. https://github.com/ranocha/Hamiltonian-RRK-notebooks (2020). https://doi.org/10.5281/zenodo.3607523

  37. Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes (2020). arxiv:2003.03012 [math.NA]

  38. Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020). https://doi.org/10.1137/19M1263480. arXiv:1905.09129 [math.NA]

    Article  MathSciNet  MATH  Google Scholar 

  39. Richtmyer, R.D., Morton, K.W.: Difference Methods for Boundary-Value Problems. Wiley, New York (1967)

    MATH  Google Scholar 

  40. Sanz-Serna, J.M.: An explicit finite-difference scheme with exact conservation properties. J. Comput. Phys. 47(2), 199–210 (1982). https://doi.org/10.1016/0021-9991(82)90074-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  42. Sanz-Serna, J.M., Manoranjan, V.: A method for the integration in time of certain partial differential equations. J. Comput. Phys. 52(2), 273–289 (1983). https://doi.org/10.1016/0021-9991(83)90031-1

    Article  MathSciNet  MATH  Google Scholar 

  43. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  44. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1. 0 Contributors: SciPy 1.0—Fundamental Algorithms for Scientific Computing in Python (2019). arXiv:1907.10121 [cs.MS]

  45. Wolfram Research, Inc.: Mathematica (2019). https://www.wolfram.com

Download references

Acknowledgements

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). The authours would like to thank Ernst Hairer for a discussion of symplecticity and the preservation of phase space volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ranocha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Superconvergence Theorem Proofs

Superconvergence Theorem Proofs

To facilitate the proof of the general result 1, we first present and prove a version restricted to linear problems.

Theorem 2

Consider the linear Euclidean Hamiltonian system

$$\begin{aligned} {\left\{ \begin{array}{ll} u'(t) = L u(t), \\ u(0) = u_0, \end{array}\right. } \quad u(t) = \begin{pmatrix} q(t) \\ p(t) \end{pmatrix}, \quad L = \alpha \begin{pmatrix} 0 &{} \mathrm{I}\\ -\mathrm{I}&{} 0 \end{pmatrix}. \end{aligned}$$
(27)

and an explicit Runge–Kutta method of order \(p \in {\mathbb {N}}\) with \(s \ge p\) stages. The corresponding RRK scheme conserving the Hamiltonian has an order of accuracy \(p+1\) if p is odd.

In the proof of Theorem 2, the following lemma will be used.

Lemma 1

For \(s,m \in {\mathbb {N}}\), \(2m \le s+1\),

$$\begin{aligned} \sum _{n=\max \left\{ 1-m, m-s\right\} }^{\min \left\{ m-1, s-m\right\} } (-1)^n \frac{1}{(m-n)! (m+n)!} = -2 (-1)^m \frac{1}{(2m)!}. \end{aligned}$$
(28)

Proof

Use some explicit calculations or the Mathematica [45] notebook Combinatorial_Lemma.nb in the repository [36]. \(\square \)

Proof of Theorem 2

It suffices to consider the first step. The baseline RK method starting from \(u_0\) yields

$$\begin{aligned} u_+ = u_0 + \sum _{k=1}^s \alpha _k {\varDelta t}^k L^k u_0, \end{aligned}$$
(29)

where \(\alpha _k\) are the monomial coefficients of the corresponding stability polynomial. The relaxation method results in the new value

$$\begin{aligned} u_+^\gamma = u_0 + \gamma \sum _{k=1}^s \alpha _k {\varDelta t}^k L^k u_0 \end{aligned}$$
(30)

with squared Euclidean norm

(31)

The second sum can also be written as

$$\begin{aligned}&{\mathop {\mathop {\sum }\limits _{j,k=1}}\limits _{j+k\text { even}}^{s}} \alpha _j \alpha _k (-1)^{(j-k)/2} h^{j+k} \left\| L^{(j+k)/2} u_0\right\| ^2 \nonumber \\&\quad = \sum _{m=1}^s \sum _{n=\max \left\{ 1-m, m-s\right\} }^{\min \left\{ m-1, s-m\right\} } (-1)^n \alpha _{m-n} \alpha _{m+n} \left\| L^m u_0\right\| ^2. \end{aligned}$$
(32)

The non-zero value of the relaxation parameter conserving the Euclidean norm is

$$\begin{aligned} \gamma = \frac{ - 2 \sum _{l=1}^{\lfloor s/2\rfloor } (-1)^l \alpha _{2l} {\varDelta t}^{2l} \left\| L^l u_0\right\| ^2 }{ \sum _{m=1}^s \sum _{n=\max \left\{ 1-m, m-s\right\} }^{\min \left\{ m-1, s-m\right\} } (-1)^n \alpha _{m-n} \alpha _{m+n} \left\| L^m u_0\right\| ^2 }. \end{aligned}$$
(33)

For a p-th order baseline scheme,

$$\begin{aligned} \alpha _k = \frac{1}{k!}, \qquad k \in \left\{ 1, \ldots , p\right\} . \end{aligned}$$
(34)

Hence, for odd p, the numerator of \(\gamma \) (33) is

$$\begin{aligned}&- 2 \sum _{l=1}^{\lfloor s/2\rfloor } (-1)^l \alpha _{2l} {\varDelta t}^{2l} \left\| L^l u_0\right\| ^2 \nonumber \\&\quad = - 2 \sum _{l=1}^{\lfloor p/2\rfloor } (-1)^l \frac{1}{(2l)!} {\varDelta t}^{2l} \left\| L^l u_0\right\| ^2 \nonumber \\&\qquad - 2 (-1)^{(p+1)/2} \alpha _{p+1} {\varDelta t}^{p+1} \left\| L^{(p+1)/2} u_0\right\| ^2 + {\mathcal {O}}({\varDelta t}^{p+3}). \end{aligned}$$
(35)

Because of Lemma 1, the denominator of \(\gamma \) (33) for odd p is

$$\begin{aligned}&\sum _{m=1}^s \sum _{n=\max \left\{ 1-m, m-s\right\} }^{\min \left\{ m-1, s-m\right\} } (-1)^n \alpha _{m-n} \alpha _{m+n} \left\| L^m u_0\right\| ^2 \nonumber \\&\quad = - 2 \sum _{m=1}^{\lfloor p/2\rfloor } (-1)^m \frac{1}{(2m)!} \left\| L^m u_0\right\| ^2 \nonumber \\&\qquad - 2 (-1)^{(p+1)/2} \frac{1}{(p+1)!} {\varDelta t}^{p+1} \left\| L^{(p+1)/2} u_0\right\| ^2 + {\mathcal {O}}({\varDelta t}^{p+3}). \end{aligned}$$
(36)

Thus,

$$\begin{aligned} \gamma = 1 - 2 (-1)^{(p+1)/2} \left( \alpha _{p+1} - \frac{1}{(p+1)!} \right) {\varDelta t}^{p-1} \frac{\left\| L^{(p+1)/2} u_0\right\| ^2}{\left\| L u_0\right\| ^2} + {\mathcal {O}}({\varDelta t}^{p+1}). \end{aligned}$$
(37)

Comparing the analytical solution

$$\begin{aligned} u(\gamma {\varDelta t}) = \left( \sum _{k=0}^\infty \frac{\gamma ^k {\varDelta t}^k}{k!} L^k \right) u_0 \end{aligned}$$
(38)

with the RRK solution,

$$\begin{aligned} u_+^\gamma - u(\gamma {\varDelta t})= & {} \left( \sum _{k=1}^p \frac{1}{k!} (\gamma - \gamma ^k) {\varDelta t}^k L^k \right) u_0 \nonumber \\&+ \left( \alpha _{p+1} \gamma - \frac{\gamma ^{p+1}}{(p+1)!} \right) {\varDelta t}^{p+1} L^{p+1} u_0 + {\mathcal {O}}({\varDelta t}^{p+2}). \end{aligned}$$
(39)

Inserting \(\gamma \) (37) and expanding the term \((\gamma - \gamma ^2) {\varDelta t}^2 L^2 u_0\) results in

$$\begin{aligned}&u_+^\gamma - u(\gamma {\varDelta t}) = \left( \alpha _{p+1} - \frac{1}{(p+1)!} \right) \nonumber \\&\quad \left( (-1)^{(p+1)/2} \frac{\left\| L^{(p+1)/2} u_0\right\| ^2}{\left\| L u_0\right\| ^2} L^2 u_0 + L^{p+1} u_0 \right) {\varDelta t}^{p+1} + {\mathcal {O}}({\varDelta t}^{p+2}). \end{aligned}$$
(40)

Finally, the second term in brackets vanishes because of the special structure of L (27). \(\square \)

To prove Theorem 1, expansions using rooted trees will be applied, cf. [4, Chapter 3]. The following structural results will be used.

Lemma 2

For the Euclidean Hamiltonian system (23), \(m \in {\mathbb {N}}\), and \(n \in \left\{ 0, \ldots , m\right\} \), there exists a smooth function \(h_{m,n}\) such that

$$\begin{aligned} f^{(m)}(\underbrace{f, \ldots , f}_{n \text { terms}}, \underbrace{u, \ldots , u}_{m-n \text { terms}}) = {\left\{ \begin{array}{ll} h_{m,n}(\left\| u\right\| ^2/2) f(u), &{} \text {if } n \text { is even}, \\ h_{m,n}(\left\| u\right\| ^2/2) u, &{} \text {if } n \text { is odd}. \end{array}\right. } \end{aligned}$$
(41)

Proof (Proof by induction)

The induction hypothesis is fulfilled for the basic cases \(m = 1\) and \(n \in \left\{ 0,1\right\} \), since

$$\begin{aligned} f'(q, p)= & {} \begin{pmatrix} g' p q^T &{} g' p p^T + g \mathrm{I}\\ - g' q q^T - g \mathrm{I}&{} - g' q p^T \end{pmatrix}, \nonumber \\ f' f= & {} - g^2 \begin{pmatrix} q \\ p \end{pmatrix} \propto u, \quad f' u = \bigl ( g' (|q|^2 + |p|^2) + g \bigr ) \begin{pmatrix} p \\ -q \end{pmatrix} \propto f, \end{aligned}$$
(42)

and \(g, g'\) depend on \(\left\| u\right\| ^2\).

The induction step from m to \(m+1\) can be carried out by differentiating the identity (41). For even n, the derivative with respect to \(u^j\) of the right hand side is

$$\begin{aligned} \partial _j h_{m,n} f^i = h_{m,n}' u^j f^i + h_{m,n} f^i_j. \end{aligned}$$
(43)

Multiplication by \(u^j\) and \(f^j\), respectively, yield

$$\begin{aligned} \begin{aligned} (\partial _j h_{m,n} f^i) u^j&= (h_{m,n}' \left\| u\right\| ^2 + g' \left\| u\right\| ^2 + g) f^i, \\ (\partial _j h_{m,n} f^i) f^j&= -g^2 h_{m,n} u^i. \end{aligned} \end{aligned}$$
(44)

Similarly, for odd n, the derivative of the right hand side is

$$\begin{aligned} \partial _j h_{m,n} u^i = h_{m,n}' u^j u^i + h_{m,n} \delta ^i_j \end{aligned}$$
(45)

and multiplication by \(u^j\) and \(f^j\), respectively, result in

$$\begin{aligned} \begin{aligned} (\partial _j h_{m,n} u^i) u^j&= (h_{m,n}' \left\| u\right\| ^2 + h_{m,n}) u^i, \\ (\partial _j h_{m,n} u^i) f^j&= h_{m,n} f^i. \end{aligned} \end{aligned}$$
(46)

For all n, multiplication of the derivative of the right hand side by \(u^j\) doesn’t change the direction while multiplication by \(f^j\) flips the direction from u to f and vice versa.

The derivative with respect to \(u^j\) of the left hand side of (41) is

$$\begin{aligned} \begin{aligned}&\partial _j f^i_{j_1 \ldots j_m} f^{j_{1}} \ldots f^{j_{n}} u^{j_{n+1}} \ldots u^{j_{m}} \\&\quad = f^i_{j_1 \ldots j_m j} f^{j_{1}} \ldots f^{j_{n}} u^{j_{n+1}} \ldots u^{j_{m}} \\&\qquad + f^i_{j_1 \ldots j_m} f^{j_{1}}_j f^{j_{2}} \ldots f^{j_{n}} u^{j_{n+1}} \ldots u^{j_{m}} + \cdots + f^i_{j_1 \ldots j_m} f^{j_{1}} \ldots f^{j_{n-1}} f^{j_{n}}_j u^{j_{n+1}} \ldots u^{j_{m}} \\&\qquad + f^i_{j_1 \ldots j_m} f^{j_{1}} \ldots f^{j_{n}} \delta ^{j_{n+1}}_j u^{j_{n+2}} \ldots u^{j_{m}} + \cdots + f^i_{j_1 \ldots j_m} f^{j_{1}} \ldots f^{j_{n}} u^{j_{n+1}} \ldots u^{j_{m-1}} \delta ^{j_{m}}_j. \end{aligned}\nonumber \\ \end{aligned}$$
(47)

Multiplication of all but the first term on the right hand side by \(u^j\) doesn’t change the direction while multiplication by \(f^j\) flips the direction from u to f and vice versa, exactly as for the derivative of the right hand side of (41). Hence, the term \(f^i_{j_1 \ldots j_m j} f^{j_{1}} \ldots f^{j_{n}} u^{j_{n+1}} \ldots u^{j_{m}}\) must show the same behavior, proving the induction hypothesis (41) for \(m+1\) instead of m.

\(\square \)

Lemma 3

For the Euclidean Hamiltonian system (23) and a rooted tree t,

$$\begin{aligned} {\left\{ \begin{array}{ll} F(t)(u_0) \parallel f(u_0), &{} \text {if } |t| \text { is odd}, \\ F(t)(u_0) \parallel u_0, &{} \text {if } |t| \text { is even}, \end{array}\right. } \end{aligned}$$
(48)

where \(\parallel \) indicates that two vectors are parallel.

Proof

The result is proved by induction using the hypothesis “Consider a rooted tree \(t = [t_1, \ldots , t_m]\) with elementary differential \(F(t)(u_0) = f^{(m)}(u_0)\bigl ( F(t_1)(u_0), \ldots , F(t_m)(u_0) \bigr )\). If a leaf is added to one of the \(t_i\) or the direction of one of the arguments of \(f^{(m)}(u_0)\) is changed from \(u_0\) to \(f(u_0)\) or vice versa, the direction of \(F(t)(u_0)\) changes from \(u_0\) to \(f(u_0)\) and vice versa. Additionally, (48) holds.”

The induction hypothesis is fulfilled for the base case \(|t| = 1\) because of (42).

Induction step: Appending a leaf or changing the direction of one of the arguments flips the direction because of the induction hypothesis. The bushy trees behave as desired because of Lemma 2. \(\square \)

Proof of Theorem 1

To generalize the approach for the linear case in the proof of Theorem 2, the leading order term of \(\gamma - 1\) has to be computed and \(u_+^\gamma \) has to be compared with \(u(\gamma {\varDelta t})\).

The relaxation parameter \(\gamma \) can be written as [25, eq. (11) and Remark 4]

$$\begin{aligned} \gamma= & {} \frac{ 2 \sum _{i,j=1}^s b_i a_{ij} \left\langle {f_i,\, f_j}\right\rangle }{ \sum _{i,j=1}^s b_i b_j \left\langle {f_i,\, f_j}\right\rangle } = \frac{ 2 \left\| u_0\right\| ^2 - 2 \left\langle {u_+,\, u_0}\right\rangle }{ \left\| u_+ - u_0\right\| ^2 } \nonumber \\= & {} \frac{ 2 \left\| u_0\right\| ^2 - 2 \left\langle {u_+,\, u_0}\right\rangle }{ 2 \left\| u_0\right\| ^2 - 2 \left\langle {u_+,\, u_0}\right\rangle + \left( \left\| u_+\right\| ^2 - \left\| u_0\right\| ^2\right) . }. \end{aligned}$$
(49)

Hence, the denominator of \(\gamma \) is the numerator plus a high order correction \(\left\| u_+\right\| ^2 - \left\| u_0\right\| ^2\), exactly as in the linear case.

For \(n \in {\mathbb {N}}\), the approximate solution of the baseline RK scheme after one step can be expanded as [4, eq. (313c)]

$$\begin{aligned} u_+ = u_0 + \sum _{|t| \le n} \frac{1}{\sigma (t)} \varPhi (t) {\varDelta t}^{|t|} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{n+1}). \end{aligned}$$
(50)

For an at least second order baseline scheme, the numerator of \(\gamma \) is

$$\begin{aligned}&2 \left\| u_0\right\| ^2 - 2 \left\langle {u_+,\, u_0}\right\rangle = - 2 \sum _{|t| = 2} \frac{1}{\sigma (t)} \varPhi (t) {\varDelta t}^{|t|} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{3}) \nonumber \\&\quad = - 2 \underbrace{\sum _{i=1}^s b_i c_i}_{= 1/2} {\varDelta t}^2 \left\langle { f' f(u_0) ,\, u_0 }\right\rangle + {\mathcal {O}}({\varDelta t}^{3}). \end{aligned}$$
(51)

Because of (42),

$$\begin{aligned} \left\langle { f' f(u_0) ,\, u_0 }\right\rangle = - g^2 |q|^2 - g^2 |p|^2. \end{aligned}$$
(52)

This is in perfect agreement with the corresponding term \(\left\| L u_0\right\| ^2\) in the linear case.

Since the baseline method has an order of accuracy p,

$$\begin{aligned} \left\| u_+\right\| ^2 - \left\| u_0\right\| ^2 = \ell _{\mathrm {ot}}{\varDelta t}^{p+1} + {\mathcal {O}}({\varDelta t}^{p+2}), \end{aligned}$$
(53)

where \(\ell _{\mathrm {ot}}\) denotes the leading order term. In conclusion, the relaxation parameter \(\gamma \) can be expanded as

$$\begin{aligned} \gamma = 1 - \frac{\ell _{\mathrm {ot}}}{g^2 (|q_0|^2 + |p_0|^2)} {\varDelta t}^{p-1} + {\mathcal {O}}({\varDelta t}^{p}). \end{aligned}$$
(54)

To compute the order of accuracy, the expansions [4, eqs. (311d) and (313c)]

$$\begin{aligned} u({\varDelta t})&= u_0 + \sum _{|t| \le p+1} \frac{1}{\sigma (t) t!} {\varDelta t}^{|t|} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{p+2}), \end{aligned}$$
(55)
$$\begin{aligned} u(\gamma {\varDelta t})&= u_0 + \sum _{|t| \le p+1} \frac{1}{\sigma (t) t!} \gamma ^{|t|} {\varDelta t}^{|t|} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{p+2}), \end{aligned}$$
(56)
$$\begin{aligned} u_+^\gamma = u_0 + \gamma (u_+ - u_0)&= u_0 + \sum _{|t| \le p+1} \frac{1}{\sigma (t)} \varPhi (t) \gamma {\varDelta t}^{|t|} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{p+2}), \end{aligned}$$
(57)

will be used. The order conditions

$$\begin{aligned} \varPhi (t) = \frac{1}{t!}, \qquad |t| \le p, \end{aligned}$$
(58)

are satisfied for the baseline RK scheme. Hence,

$$\begin{aligned} u_+^\gamma - u(\gamma {\varDelta t})= & {} (\gamma - \gamma ^2) \sum _{|t| = 2} \frac{1}{\sigma (t)} \varPhi (t) {\varDelta t}^2 F(t)(u_0) \nonumber \\&+ \sum _{|t| = p+1} \frac{1}{\sigma (t)} \left( \varPhi (t) - \frac{1}{t!} \right) {\varDelta t}^{p+1} F(t)(u_0) + {\mathcal {O}}({\varDelta t}^{p+2}). \end{aligned}$$
(59)

Inserting the value of \(\gamma \) and the only rooted tree of order two,

$$\begin{aligned} (\gamma - \gamma ^2) \sum _{|t| = 2} \frac{1}{\sigma (t)} \varPhi (t) {\varDelta t}^2 F(t)(u_0) = \frac{{\varDelta t}^{p+1}}{2} \frac{\ell _{\mathrm {ot}}}{g^2 (|q_0|^2 + |p_0|^2)} f'f(u_0). \end{aligned}$$
(60)

Using \(\Vert u_0\Vert ^2 = \Vert u({\varDelta t})\Vert ^2\) and the expansions (50) and (55),

$$\begin{aligned} \ell _{\mathrm {ot}}= & {} 2 \sum _{|t| = p+1} \frac{1}{\sigma (t)} \left( \varPhi (t) - \frac{1}{t!} \right) \left\langle { F(t)(u_0) ,\, u_0 }\right\rangle \nonumber \\&+ \underbrace{\sum _{|t_1| + |t_2| = p+1} \frac{1}{\sigma (t_1) \sigma (t_2)} \left( \varPhi (t_1) \varPhi (t_2) - \frac{1}{t_1! \, t_2!} \right) \left\langle { F(t_1)(u_0) ,\, F(t_2)(u_0) }\right\rangle }_{= 0}.\quad \end{aligned}$$
(61)

The last sum on the right hand side vanishes, since \(|t_1|, |t_2| \in \left\{ 1, \ldots , p\right\} \) and consequently \(\varPhi (t_i) = \nicefrac {1}{t_i!}\) because of the order conditions.

Finally, using Lemma 3 and inserting \(f' f(u_0)\), noticing that \(\Vert u_0\Vert ^2 = |q_0|^2 + |p_0|^2\),

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \frac{\ell _{\mathrm {ot}}}{g^2 (|q_0|^2 + |p_0|^2)} f'f(u_0) + \sum _{|t| = p+1} \frac{1}{\sigma (t)} \left( \varPhi (t) - \frac{1}{t!} \right) F(t)(u_0) \\&\quad = - \frac{1}{2} \ell _{\mathrm {ot}}\frac{1}{|q_0|^2 + |p_0|^2} u_0 + \sum _{|t| = p+1} \frac{1}{\sigma (t)} \left( \varPhi (t) - \frac{1}{t!} \right) \frac{1}{|q_0|^2 + |p_0|^2} \left\langle { F(t)(u_0) ,\, u_0 }\right\rangle u_0 \\&\quad = 0. \end{aligned}\nonumber \\ \end{aligned}$$
(62)

Hence, the RRK method has an order of accuracy \(p+1\). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranocha, H., Ketcheson, D.I. Relaxation Runge–Kutta Methods for Hamiltonian Problems. J Sci Comput 84, 17 (2020). https://doi.org/10.1007/s10915-020-01277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01277-y

Keywords

Mathematics Subject Classification

Navigation