Skip to main content
Log in

A Mixed Method for Time-Transient Acoustic Wave Propagation in Metamaterials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we develop a finite element method for acoustic wave propagation in Drude-type metamaterials. The governing equation is written as a symmetrizable hyperbolic system with auxiliary variables. The standard mixed finite elements and discontinuous finite elements are used for spatial discretization, and the Crank–Nicolson scheme is used for time discretization. The a priori error analysis of fully discrete scheme is carried out in details. Numerical experiments illustrating the theoretical results and metamaterial wave propagation, are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in \(H({\rm div})\) and applications. Math. Comput. 66(219), 957–984 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in \(H({\rm div})\) and \(H({\rm curl})\). Numer. Math. 85(2), 197–217 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bellis, C., Lombard, B.: Simulating transient wave phenomena in acoustic metamaterials using auxiliary fields. Wave Motion 86, 175–194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1992)

    MATH  Google Scholar 

  6. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  8. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Modél. Math. Anal. Numér. 22(2), 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, Y., Li, J., Yang, W.: Modeling backward wave propagation in metamaterials by the finite element time-domain method. SIAM J. Sci. Comput. 35(1), B248–B274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J.: A literature survey of mathematical study of metamaterials. Int. J. Numer. Anal. Model. 13(2), 230–243 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics, vol. 43. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  12. Li, J., Wood, A.: Finite element analysis for wave propagation in double negative metamaterials. J. Sci. Comput. 32(2), 263–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milton, G.W., Seppecher, P.: Realizable response matrices of multi-terminal electrical, acoustic and elastodynamic networks at a given frequency. Proc. R. Soc. Lond. Ser A Math. Phys. Eng. Sci. 464(2092), 967–986 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. Lond. Ser A Math. Phys. Eng. Sci. 463(2079), 855–880 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nédélec, J.-C.: Mixed finite elements in \({mathbf{R}}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    MathSciNet  Google Scholar 

  16. Nédélec, J.-C.: A new family of mixed finite elements in \({\mathbf{R}}^3\). Numer. Math. 50(1), 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Norris, A.N., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48(6), 525–538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings of the Conference on Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., Vol. 606, pp. 292–315. Springer, Berlin (1977)

  19. Yang, W., Huang, Y., Li, J.: Developing a time-domain finite element method for the Lorentz metamaterial model and applications. J. Sci. Comput. 68(2), 438–463 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yosida, K.: Functional Analysis, Springer Classics in Mathematics, 6th edn. Springer, Berlin (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghun J. Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J. A Mixed Method for Time-Transient Acoustic Wave Propagation in Metamaterials. J Sci Comput 84, 20 (2020). https://doi.org/10.1007/s10915-020-01275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01275-0

Keywords

Mathematics Subject Classification

Navigation