Skip to main content
Log in

Image Denoising Using \(L^{p}\)-norm of Mean Curvature of Image Surface

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new class of imaging denoising models by using the \(L^p\)-norm of mean curvature of image graphs as regularizers with \(p\in (1,2]\). The motivation of introducing such models is to add stronger regularizations than that of the original mean curvature based image denoising model (Zhu and Chan in SIAM J Imaging Sci 5(1):1–32, 2012) in order to remove noise more efficiently. To minimize these variational models, we develop a novel augmented Lagrangian method, and one thus just needs to solve two linear elliptic equations to find saddle points of the associated augmented Lagrangian functionals. Specifically, we linearize the nonlinear term in one of the two subproblems and minimize a proximal-like functional that can be easily treated. We prove that the minimizer of the substitute functional does reduce the value of the original subproblem under certain conditions. Numerical results are presented to illustrate the features of the proposed models and also the efficiency of the designed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aubert, G., Vese, L.: A variational method in image recovery. SIAM J. Numer. Anal. 34(5), 1948–1979 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  3. Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3), 363–389 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bae, E., Shi, J., Tai, X.C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. 20(5), 1199–1210 (2011)

    Article  MathSciNet  Google Scholar 

  6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bae, E., Tai, X.C., Zhu, W.: Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imaging 11(1), 1–23 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, D., Chen, Y., Xue, D.: Factional-order total variation image restoration based on primal-dual algorithm. Abstr. Appl. Anal. 2013, 10 (2013)

    MATH  Google Scholar 

  9. Chan, T., Esedoglu, S.: Aspects of total variation regularized \(L^{1}\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  Google Scholar 

  11. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  Google Scholar 

  12. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. Duan, Y., Wang, Y., Tai, X.-C., Hahn, J.: A fast augmented Lagrangian method for Euler’s elastica model. In: SSVM 2011, LSCS 6667, pp. 144–156 (2012)

  14. El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3257–3264 (2010)

  15. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  16. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    Article  Google Scholar 

  17. Lysaker, M., Osher, S., Tai, X.C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1457 (2004)

    Article  MathSciNet  Google Scholar 

  18. Moreau, J.J.: Fonctions convexes dualesetpoints proximaux dansunespacehilbertien. C.R. Acad. Sci. Paris Ser. A Math. 255, 2897–2899 (1962)

    MATH  Google Scholar 

  19. Myllykoski, M., Glowinski, R., Karkkainen, T., Rossi, T.: A new augmented Lagrangian approach for L1-mean curvature image denoising. SIAM J. Imaging Sci. 8(1), 95–125 (2015)

    Article  MathSciNet  Google Scholar 

  20. Osher, S., Burger, M., Goldfarb, D., Xu, J.J., Yin, W.T.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1} norm\). SIAM Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  23. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  24. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. IEEE International Conference on Computer Vision (ICCV) (2009)

  25. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s Elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MathSciNet  Google Scholar 

  26. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, Vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  Google Scholar 

  27. Yang, F., Chen, K., Yu, B.: Homotopy method for a mean curvature-based denoising model. Appl. Numer. Math. 62(3), 185–200 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zhu, W., Chan, T.: Image denoising using mean curvature of image surface. SIAM J. Imaging Sci. 5(1), 1–32 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl. Imaging 7(4), 1409–1432 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhu, W.: A numerical study of a mean curvature denoising model using a novel augmented Lagrangian methdod. Inverse Probl. Imaging 11(6), 975–996 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their valuable comments and suggestions, which have helped very much to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W. Image Denoising Using \(L^{p}\)-norm of Mean Curvature of Image Surface. J Sci Comput 83, 32 (2020). https://doi.org/10.1007/s10915-020-01216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01216-x

Keywords

Navigation