Skip to main content
Log in

Non-Eulerian Newmark Methods: A Powerful Tool for Free-Boundary Continuum Mechanics Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we introduce a new procedure to solve free-surface problems based on applying the Newmark family of time integration schemes to non-Eulerian formulations of the problem (i.e., in non-current domains). The methods obtained within this framework present important advantages over other methods in literature, as for instance, that the computational domain is independent of the current unknowns, the convective term disappears, and modelling and tracking of the free surface is straightforward. Moreover, the Newmark algorithm is convenient to obtain accurate and stable methods for solving continuum mechanics models which can be written in terms of either displacement, velocity or acceleration. We consider a viscous Newtonian fluid in a time dependent domain which may undergo large deformations along the time but not topological changes of interfaces. A unified formulation providing the general framework of the proposed schemes is stated in this context. They are combined with finite elements methods for space discretization. In particular, the Newmark family of pure Lagrange–Galerkin methods is stated. The non-Eulerian formulations are advantageous to obtain linear methods. More precisely, linearized versions of the standard (non-linear) Newmark schemes that present good approximation properties are also proposed. Moreover, we deal with problems associated with high mesh distortion by proposing a reinitialization method to be applied in the non-Eulerian Newmark framework that preserves the order of convergence. In order to assess the performance of the proposed numerical methods, we solve different problems in two space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Badía, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47, 1971–2000 (2009)

    Article  MathSciNet  Google Scholar 

  2. Benítez, M., Bermúdez, A.: A second order characteristics finite element scheme for natural convection problems. J. Comput. Appl. Math. 235, 3270–3284 (2011)

    Article  MathSciNet  Google Scholar 

  3. Benítez, M., Bermúdez, A.: Numerical analysis of a second-order pure Lagrange–Galerkin method for convection–diffusion problems. Part I: time discretization. SIAM. J. Numer. Anal. 50, 858–882 (2012)

    Article  MathSciNet  Google Scholar 

  4. Benítez, M., Bermúdez, A.: Numerical analysis of a second-order pure Lagrange–Galerkin method for convection–diffusion problems. Part II: fully discretized scheme and numerical results. SIAM. J. Numer. Anal. 50, 2824–2844 (2012)

    Article  MathSciNet  Google Scholar 

  5. Benítez, M., Bermúdez, A.: Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of convection–diffusion problems. Int. J. Numer. Anal. Mod. 11, 271–287 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Benítez, M., Bermúdez, A.: Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of Navier–Stokes equations. Appl. Numer. Math. 95, 62–81 (2015)

    Article  MathSciNet  Google Scholar 

  7. Benítez, M., Bermúdez, A.: Second order pure Lagrange–Galerkin methods for fluid–structure interaction problems. SIAM J. Sci. Comput. 37, B744–B777 (2015)

    Article  MathSciNet  Google Scholar 

  8. Benítez, M., Bermúdez, A., Fontán, P.: A second-order linear Newmark method for Lagrangian Navier–Stokes equations. In: Recent Advances in PDEs: Analysis, Numerics and Control, vol. 17, Chap. 3, pp. 33–59. SEMA SIMAI Springer Series (2018)

  9. Bermúdez, A., Nogueiras, M.R., Vázquez, C.: Numerical analysis of convection–diffusion–reaction problems with higher order characteristics/finite elements. Part I: time discretization. SIAM. J. Numer. Anal. 44, 1829–1853 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bermúdez, A., Nogueiras, M.R., Vázquez, C.: Numerical analysis of convection–diffusion–reaction problems with higher order characteristics/finite elements. Part II: fully discretized scheme and quadrature formulas. SIAM. J. Numer. Anal. 44, 1854–1876 (2006)

    Article  MathSciNet  Google Scholar 

  11. Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  Google Scholar 

  13. Del Pin, F., Idelsohn, S., Oñate, E., Aubry, R.: The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid-object interactions. Comput. Fluids 36, 27–38 (2007)

    Article  Google Scholar 

  14. Douglas Jr., J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  15. Erturk, E., Corke, T., Gokcol, C.: Numerical solutions of 2D steady incompressible driven cavity flow at high reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  Google Scholar 

  16. Ewing, R.E., Russel, T.F.: Multistep Galerkin methods along characteristics for convection–diffusion problems. In: Advances in Computer Methods for Partial Differential Equations IV, pp. 28–36. IMACS Publications, New York (1981)

  17. Fife, P.C., Liñán, A., Williams, F. (eds.): Dynamical Issues in Combustion Theory. Springer, New York (1991)

  18. Fortin, A., Jardak, M., Gervais, J.J., Pierre, R.: Localization of Hopf bifurcations in fluid flow problems. Int. J. Numer. Methods Fluids 24, 1185–1210 (1997)

    Article  MathSciNet  Google Scholar 

  19. Gervais, J.J., Lemelin, D., Pierre, R.: Some experiments with stability analysis of discrete incompressible flows in the lid-driven cavity. Int. J. Numer. Methods Fluids 24, 477–492 (1997)

    Article  Google Scholar 

  20. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  Google Scholar 

  21. Gurtin, M.E.: An Introduction to Continuum Mechanics, vol. 158. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  22. Hirt, C.W., Cook, J.L., Butler, T.D.: A Lagrangian method for calculation of the dynamics of an incompressible fluid with a free surface. J. Comput. Phys. 5, 103–124 (1970)

    Article  Google Scholar 

  23. Huerta, A., Liu, W.K.: Viscous flow with large free surface motion. Comput. Methods Appl. Mech. Eng. 69, 277–324 (1988)

    Article  Google Scholar 

  24. Idelsohn, S., Marti, J., Limache, A., Oñate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197, 1762–1776 (2008)

    Article  MathSciNet  Google Scholar 

  25. Idelsohn, S., Oñate, E., Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 61, 964–989 (2004)

    Article  MathSciNet  Google Scholar 

  26. Idelsohn, S., Oñate, E., Del Pin, F., Calvo, N.: Fluid–structure interaction using the particle finite element method. Comput. Methods Appl. Mech. Eng. 195, 2100–2123 (2006)

    Article  MathSciNet  Google Scholar 

  27. Kuhlmann, H., Wanschura, M., Rath, H.: Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267–299 (1997)

    Article  MathSciNet  Google Scholar 

  28. Oñate, E., Idelsohn, S., Celigueta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 197, 1777–1800 (2008)

    Article  MathSciNet  Google Scholar 

  29. Perumal, D., Dass, A.: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann method. Comput. Math. Appl. 61, 3711–3721 (2011)

    Article  MathSciNet  Google Scholar 

  30. Pironneau, O.: On the transport–diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  Google Scholar 

  31. Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of Newtonian fluid flows. Int. J. Numer. Methods Eng 43, 607–619 (1998)

    Article  MathSciNet  Google Scholar 

  32. Ramaswamy, B., Kawahara, M.: Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7, 953–984 (1987)

    Article  Google Scholar 

  33. Raviart, P., Thomas, J.: A mixed-finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics. Springer, New York (1977)

  34. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection–diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MathSciNet  Google Scholar 

  35. Souli, M., Zolesio, J.P.: Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics. Comput. Methods Appl. Mech. Eng. 191, 451–466 (2001)

    Article  Google Scholar 

  36. Süli, E.: Stability and convergence of the Lagrange–Galerkin method with non-exact integration. In: The Mathematics of Finite Elements and Applications, VI, pp. 435–442. Academic Press, London (1988)

  37. Wahba, E.: Multiplicity of states for two-sided and four-sided lid driven cavity flows. Comput. Fluids 38, 247–253 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by FEDER and Xunta de Galicia (Spain) under Grant 2017 GRC GI-1563 and research Project ED431G/01, and by FEDER and the Spanish Ministry of Economy and Competitiveness under research Project MTM2017-86459-R. We would also like to thank the referee for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benítez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez, M., Bermúdez, A. & Fontán, P. Non-Eulerian Newmark Methods: A Powerful Tool for Free-Boundary Continuum Mechanics Problems. J Sci Comput 83, 44 (2020). https://doi.org/10.1007/s10915-020-01207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01207-y

Keywords

Mathematics Subject Classification

Navigation