Skip to main content
Log in

On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We deal with the numerical solution of linear partial differential equations (PDEs) with focus on the goal-oriented error estimates including algebraic errors arising by an inaccurate solution of the corresponding algebraic systems. The goal-oriented error estimates require the solution of the primal as well as dual algebraic systems. We solve both systems simultaneously using the bi-conjugate gradient method which allows to control the algebraic errors of both systems. We develop a stopping criterion which is cheap to evaluate and guarantees that the estimation of the algebraic error is smaller than the estimation of the discretization error. Using this criterion and an adaptive mesh refinement technique, we obtain an efficient and robust method for the numerical solution of PDEs, which is demonstrated by several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. After the restart, the machine accuracy is achieved in few steps and the error estimators give vanishing values, therefore we do not show them.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience (Wiley), New York (2000)

    MATH  Google Scholar 

  2. Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Methods Eng. 89(13), 1605–1634 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Arioli, M.: A stopping criterion for the conjugate gradient algorithm in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Arioli, M., Liesen, J., Miedlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMM-Mitt. 36(1), 102–129 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Balan, A., Woopen, M., May, G.: Adjoint-based \(hp\)-adaptivity on anisotropic meshes for high-order compressible flow simulations. Comput. Fluids 139, 47–67 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH Zürich. Birkhäuser Verlag (2003)

  7. Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). https://doi.org/10.1137/1.9781611971538

  8. Bartoš, O., Dolejší, V., May, G., Rangarajan, A., Roskovec, F.: Goal-oriented anisotropic \(hp\)-mesh optimization technique for linear convection–diffusion–reaction problem. Comput. Math. Appl. 78(9), 2973–2993 (2019)

    MathSciNet  Google Scholar 

  9. Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Carpio, J., Prieto, J., Bermejo, R.: Anisotropic “goal-oriented” mesh adaptivity for elliptic problems. SIAM J. Sci. Comput. 35(2), A861–A885 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Dolejší, V.: ADGFEM—Adaptive discontinuous Galerkin finite element method, in-house code. Charles University, Prague, Faculty of Mathematics and Physics (2014). https://labk10.karlin.mff.cuni.cz/~dolejsi/

  12. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method-Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics, vol. 48. Springer, Cham (2015)

    MATH  Google Scholar 

  13. Dolejší, V., Holík, M., Hozman, J.: Efficient solution strategy for the semi-implicit discontinuous Galerkin discretization of the Navier–Stokes equations. J. Comput. Phys. 230, 4176–4200 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Dolejší, V., May, G., Rangarajan, A., Roskovec, F.: A goal-oriented high-order anisotropic mesh adaptation using discontinuous Galerkin method for linear convection–diffusion–reaction problems. SIAM J. Sci. Comput. 41(3), A1899–A1922 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Dolejší, V., Roskovec, F.: Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems. Appl. Math. 62(6), 579–605 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Fidkowski, K., Darmofal, D.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011)

    Google Scholar 

  17. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Numerical Analysis, Proceedings of 6th Biennial Dundee Conference on University of Dundee, Dundee, 1975. Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, Berlin (1976). http://www.ams.org/mathscinet-getitem?mr=57#1841

  18. Formaggia, L., Micheletti, S., Perotto, S.: Anisotropic mesh adaption in computational fluid dynamics: application to the advection–diffusion–reaction and the Stokes problems. Appl. Numer. Math. 51(4), 511–533 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Georgoulis, E.H., Hall, E., Houston, P.: Discontinuous Galerkin methods on \(hp\)-anisotropic meshes II: a posteriori error analysis and adaptivity. Appl. Numer. Math. 59(9), 2179–2194 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Giles, M., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Greenbaum, A.: Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Matrix Anal. Appl. 18(3), 535–551 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Hartmann, R.: Multitarget error estimation and adaptivity in aerodynamic flow simulations. SIAM J. Sci. Comput. 31(1), 708–731 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations II: goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3, 141–162 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Korotov, S.: A posteriori error estimation of goal-oriented quantities for elliptic type BVPs. J. Comput. Appl. Math. 191(2), 216–227 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Kuzmin, D., Korotov, S.: Goal-oriented a posteriori error estimates for transport problems. Math. Comput. Simul. 80(8, SI), 1674–1683 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Kuzmin, D., Möller, M.: Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems. J. Comput. Appl. Math. 233(12), 3113–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Loseille, A., Dervieux, A., Alauzet, F.: Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comput. Phys. 229(8), 2866–2897 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Mallik, G., Vohralík, M., Yousef, S.: Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers. J. Comput. Appl. Math. 366, 112367 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Meidner, D., Rannacher, R., Vihharev, J.: Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Math. 17, 143 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Nochetto, R., Veeser, A., Verani, M.: A safeguarded dual weighted residual method. IMA J. Numer. Anal. 29(1), 126–140 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Oden, J., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Picasso, M.: A stopping criterion for the conjugate gradient algorithm in the framework of anisotropic adaptive finite elements. Commun. Numer. Methods Eng. 25(4), 339–355 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Rey, V., Gosselet, P., Rey, C.: Strict bounding of quantities of interest in computations based on domain decomposition. Comput. Methods Appl. Mech. Eng. 287, 212–228 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Rey, V., Rey, C., Gosselet, P.: A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods. Comput. Methods Appl. Mech. Eng. 270, 293–303 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Richter, T.: A posteriori error estimation and anisotropy detection with the dual-weighted residual method. Int. J. Numer. Meth. Fluids 62, 90–118 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Richter, T., Wick, T.: Variational localizations of the dual weighted residual estimator. J. Comput. Appl. Math. 279, 192–208 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Šolín, P., Demkowicz, L.: Goal-oriented \(hp\)-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193, 449–468 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Strakoš, Z., Tichý, P.: On efficient numerical approximation of the bilinear form \(c^{\star }{A}^{-1}b\). SIAM J. Sci. Comput. 33(2), 565–587 (2010)

    MATH  Google Scholar 

  40. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to their colleagues from the Charles University, namely M.Kubínová, T. Gergelits and F. Roskovec for a fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Dolejší.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Grants Nos. 17-04150J and 20-01074S of the Czech Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolejší, V., Tichý, P. On Efficient Numerical Solution of Linear Algebraic Systems Arising in Goal-Oriented Error Estimates. J Sci Comput 83, 5 (2020). https://doi.org/10.1007/s10915-020-01188-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01188-y

Keywords

Mathematics Subject Classification

Navigation