Skip to main content
Log in

Towards an Adaptive Treecode for N-body Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

N-body problems are notoriously expensive to compute. For N bodies, evaluating a sum directly scales like \({\mathcal {O}}(N^2)\). A treecode approximation to the N-body problem is highly desirable because for a given level of accuracy, the computation scales instead like \({\mathcal {O}}(N\log {N})\). A main component of the treecode approximation, is computing the Taylor coefficients and moments of a cluster–particle approximation. For the two-parameter family of regularized kernels previously introduced (Ong et al. in J Sci Comput 71(3):1212–1237, 2017. https://doi.org/10.1007/s10915-016-0336-0), computing the Taylor coefficients directly is algebraically messy and undesirable. This work derives a recurrence relationship and provides an algorithm for computing the Taylor coefficients of two-parameter family of regularized kernels. The treecode is implemented in Cartesian coordinates, and numerical results verify that the recurrence relationship facilitates computation of \(G^{\epsilon ,n}({\mathbf {x}})\) and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The computational timing tests were performed on Superior, a high-performance computing infrastructure at Michigan Technological University. The research-grade C++ code was compiled without optimization using the GNU g++-4.4.6 compiler. The compute node that performed the computation had dual Intel Xeon E4-2680 2.50 GHz).

References

  1. Barnes, J., Hut, P.: A hierarchical O (NlogN) force-calculation algorithm. Nature 324, 446–449 (1986)

    Article  Google Scholar 

  2. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications, Mineola (1971)

    Google Scholar 

  3. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 97–104. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1143844.1143857

  4. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. CRC Press, Boca Raton (2004). https://doi.org/10.1201/9781315275048

    Book  Google Scholar 

  5. Christlieb, A., Krasny, R., Verboncoeur, J.: A treecode algorithm for simulating electron dynamics in a Penning–Malmberg trap. Comput. Phys. Commun. 164(1), 306–310 (2004). https://doi.org/10.1016/j.cpc.2004.06.076

    Article  MATH  Google Scholar 

  6. Christlieb, A.J., Krasny, R., Verboncoeur, J.P., Emhoff, J.W., Boyd, I.D.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2), 149–165 (2006). https://doi.org/10.1109/TPS.2006.871104

    Article  Google Scholar 

  7. Coifman, R., Rokhlin, V., Wandzura, S.: The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag. Mag. 35(3), 7–12 (1993). https://doi.org/10.1109/74.250128

    Article  Google Scholar 

  8. Duan, Z., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22(2), 184–195 (2001). https://doi.org/10.1002/1096-987X(20010130)22:2<184::AID-JCC6>3.0.CO;2-7

    Article  Google Scholar 

  9. Jackson, J.D.: Classical Electrodynamics. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  10. Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980). https://doi.org/10.1016/0021-9991(80)90040-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172(2), 879–907 (2001). https://doi.org/10.1006/jcph.2001.6862

    Article  MathSciNet  MATH  Google Scholar 

  12. Ong, B.W., Christlieb, A.J., Quaife, B.D.: A new family of regularized kernels for the harmonic oscillator. J. Sci. Comput. 71(3), 1212–1237 (2017). https://doi.org/10.1007/s10915-016-0336-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Speck, R., Arnold, L., Gibbon, P.: Towards a petascale tree code: scaling and efficiency of the PEPC library. J. Comput. Sci. 2(2), 138–143 (2011). https://doi.org/10.1016/j.jocs.2011.01.011

    Article  Google Scholar 

  14. van Elteren, A., Bédorf, J., Portegies Zwart, S.: Multi-scale high-performance computing in astrophysics: simulating clusters with stars, binaries and planets. Philos. Trans. R. Soc. A (2018). https://doi.org/10.1098/rsta.2018.0153

    Article  Google Scholar 

  15. Winckelmans, G.S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109(2), 247–273 (1993). https://doi.org/10.1006/jcph.1993.1216

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewer whose feedback significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin W. Ong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, B.W., Dhamankar, S. Towards an Adaptive Treecode for N-body Problems. J Sci Comput 82, 72 (2020). https://doi.org/10.1007/s10915-020-01177-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01177-1

Keywords

Mathematics Subject Classification

Navigation