Skip to main content
Log in

A Monolithic Arbitrary Lagrangian–Eulerian Finite Element Analysis for a Stokes/Parabolic Moving Interface Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an arbitrary Lagrangian–Eulerian (ALE)—finite element method (FEM) is developed within the monolithic approach for a moving-interface model problem of a transient Stokes/parabolic coupling with jump coefficients—a linearized fluid-structure interaction (FSI) problem. A new \(H^1\)-projection is defined for this problem for the first time to account for the mesh motion due to the moving interface. The well-posedness and optimal convergence properties in both the energy norm and \(L^2\) norm are analyzed for this mixed-type \(H^1\)-projection, with which the stability and optimal error estimate in the energy norm are derived for both semi- and fully discrete mixed finite element approximations to the Stokes/parabolic interface problem. Numerical experiments are carried out to validate all theoretical results. The developed analytical approach can be extended to a general FSI problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  2. Auricchio, F., Boffi, D., Gastaldi, L., Lefieux, A., Reali, A.: On a fictitious domain method with distributed Lagrange multiplier for interface problems. Appl. Numer. Math. 95, 36–50 (2015)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971)

    Article  MathSciNet  Google Scholar 

  4. Belytschko, T., Kennedy, J.M.: Computer models for subassembly simulation. Nucl. Eng. Design. 49(1), 17–38 (1978)

    Article  Google Scholar 

  5. Belytschko, T., Kennedy, J.M., Schoeberle, D.: Quasi-Eulerian finite element formulation for fluid-structure interaction. J. Press. Vess-T ASME 102(1), 62–69 (1980)

    Article  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    Book  Google Scholar 

  7. Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193(42–44), 4717–4739 (2004)

    Article  MathSciNet  Google Scholar 

  8. Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135, 711–732 (2017)

    Article  MathSciNet  Google Scholar 

  9. Boffi, D., Gastaldi, L., Ruggeri, M.: Mixed formulation for interface problems with distributed lagrange multiplier. Compu. Math. Appl. 68(12, Part B), 2151–2166 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  11. Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. 8, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, C.H.A., Coutand, D., Shkoller, S.: Navier–Stokes equations interacting with a nonlinear elastic fluid shell. SIAM J. Math. Anal. 39, 742–800 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

  14. Coutand, D., Shkoller, S.: On the interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 303–352 (2006)

    Article  MathSciNet  Google Scholar 

  15. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. A 9(3), 633–650 (2003)

    Article  MathSciNet  Google Scholar 

  16. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal. 42, 1–29 (2004)

    Article  MathSciNet  Google Scholar 

  17. Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian–Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–131 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian–Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hirth, C., Amsden, A.A., Cook, J.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  Google Scholar 

  21. Huerta, A., Liu, W.K.: Viscous flow structure interaction. J. Pressure Vessel Technol. 110(1), 15–21 (1988)

    Article  Google Scholar 

  22. Hughes, T.J., Liu, W.K., Zimmermann, T.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  Google Scholar 

  23. Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  24. Lee, H., Xu, S.: Finite element error estimation for quasi-Newtonian fluid-structure interaction problems. Appl. Math. Comput. 274, 93–105 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Lee, H., Xu, S.: Fully discrete error estimation for a quasi-Newtonian fluid-structure interaction problem. Comput. Math. Appl. 71, 2373–2388 (2016)

    Article  MathSciNet  Google Scholar 

  26. Liu, J.: A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures. J. Comput. Phys. 304, 380–423 (2016)

    Article  MathSciNet  Google Scholar 

  27. Liu, J., Jaiman, R.K., Gurugubelli, P.S.: A stable second-order scheme for fluid-structure interaction with strong added-mass effects. J. Comput. Phys. 270, 687–710 (2014)

    Article  MathSciNet  Google Scholar 

  28. Martín, J.S., Smaranda, L., Takahashi, T.: Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. J. Comput. Appl. Math. 230, 521–545 (2009)

    Article  MathSciNet  Google Scholar 

  29. Nicaise, S.: Polygonal Interface Problems. In: Methoden und Verfahren der Mathematischen Physik (Methods and Procedures in Mathematical Physics), Vol. 39. Verlag Peter D. Lang, Frankfurt am Main, (1993)

  30. Nitikitpaiboon, C., Bathe, K.J.: An arbitrary Lagrangian–Eulerian velocity potential formulation for fluid-structure interaction. Comput. Struct. 47(4), 871–891 (1993)

    Article  Google Scholar 

  31. Nitsche, J.: Finite element approximations for solving the elastic problem. Computing methods in applied sciences and engineering, pp. 154–167. Springer, Heidelberg (1976)

  32. Nobile, F.: Numerical Approximation of fluid-structure interaction problems with application of haemodynamics. PhD thesis, Ecole Polytechnique Federale de Lausanne, Switzerland (2001)

  33. Olshanskii, A.M., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129–149 (2006)

    Article  MathSciNet  Google Scholar 

  34. Rannacher, R.: On finite element approximation of general boundary value problems in nonlinear elasticity. Calcolo 17, 175–193 (1980)

    Article  MathSciNet  Google Scholar 

  35. Reynolds, O.: Papers on Mechanical and Physical Subjects: The Sub-Mechanics of the Universe, vol. 3. Cambridge University Press, Cambridge (1903)

    Google Scholar 

  36. Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199(41), 2633–2642 (2010)

    Article  MathSciNet  Google Scholar 

  37. Shibata, Y., Shimizu, S.: On a resolvent estimate of the interface problem for the Stokes system in a bounded domain. J. Differ. Equ. 191, 408–444 (2003)

    Article  MathSciNet  Google Scholar 

  38. Shibataa, Y., Shimizu, S.: On a resolvent estimate of the interface problem for the Stokes system in a bounded domain. J. Differ. Equ. 191, 408–444 (2003)

    Article  MathSciNet  Google Scholar 

  39. Souli, M., Benson, D.J. (eds.): Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction: Numerical Simulation. Wiley, Hoboken (2010)

    Google Scholar 

  40. Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1), 155–196 (1998)

    Article  MathSciNet  Google Scholar 

  41. Xu, J., Yang, K.: Well-posedness and robust preconditioners for discretized fluid-structure interaction systems. Comput. Methods Appl. Mech. Eng. 292, 69–91 (2015)

    Article  MathSciNet  Google Scholar 

  42. Yang, K., Sun, P., Wang, L., Xu, J., Zhang, L.: Modeling and simulation for fluid-rotating structure interaction. Comput. Methods Appl. Mech. Eng. 311, 788–814 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by NSF Grant DMS-1418806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, R., Sun, P. A Monolithic Arbitrary Lagrangian–Eulerian Finite Element Analysis for a Stokes/Parabolic Moving Interface Problem. J Sci Comput 82, 59 (2020). https://doi.org/10.1007/s10915-020-01161-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01161-9

Keywords

Mathematics Subject Classification

Navigation