Abstract
Including polynomials with small degree and stencil when designing very high order reconstructions is surely beneficial for their non oscillatory properties, but may bring loss of accuracy on smooth data unless special care is exerted. In this paper we address this issue with a new Central \(\mathsf {WENOZ}\) (\(\mathsf {CWENOZ}\)) approach, in which the reconstruction polynomial is computed from a single set of non linear weights, but the linear weights of the polynomials with very low degree (compared to the final desired accuracy) are infinitesimal with respect to the grid size. After proving general results that guide the choice of the \(\mathsf {CWENOZ}\) parameters, we study a concrete example of a reconstruction that blends polynomials of degree six, four and two, mimicking already published Adaptive Order \(\mathsf {WENO}\) reconstructions (Arbogast et al. in SIAM J Numer Anal 56(3):1818-1947, 2018),(Balsara et al. in J Comput Phys 326:780-804, 2016). The novel reconstruction yields similar accuracy and oscillations with respect to the previous ones, but saves up to 20% computational time since it does not rely on a hierarchic approach and thus does not compute multiple sets of nonlinear weights in each cell.
This is a preview of subscription content,
to check access.



Similar content being viewed by others
Notes
For this test, claw1dArena was compiled with the GNU Compiler and -O3 optimization level, profiling data were collected with the callgrind utility of the valgrind suite and analyzed with kcachegrind. The data reported refer to the linear advection of the Jiang–Shu profile and to the Lax shock tube with characteristic projection.
References
Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal. 49(2), 893–915 (2011). https://doi.org/10.1137/100791579
Arbogast, T., Huang, C.S., Zhao, X.: Accuracy of WENO and adaptive order WENO reconstructions for solving conservation laws. SIAM J. Numer. Anal. 56(3), 1818–1947 (2018). https://doi.org/10.1137/17M1154758
Baeza, A., Bürger, R., Mulet, P., Zorío, D.: Central WENO schemes through a global average weight. J. Sci. Comput. 78(1), 499–530 (2019). https://doi.org/10.1007/s10915-018-0773-z
Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020). https://doi.org/10.1016/j.jcp.2019.109062
Balsara, D.S., Garain, S., Shu, C.W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016). https://doi.org/10.1016/j.jcp.2016.09.009
Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008). https://doi.org/10.1016/j.jcp.2007.11.038
Boscheri, W., Balsara, D.S.: High order direct Arbitrary-Lagrangian–Eulerian (ALE) \(\rm P_NP_M\) schemes with WENO Adaptive-Order reconstruction on unstructured meshes. J. Comput. Phys. 398, 108899 (2019). https://doi.org/10.1016/j.jcp.2019.108899
Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, NY (2008)
Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008). https://doi.org/10.1016/j.jcp.2007.11.029
Capdeville, G.: A high-order multi-dimensional HLL-Riemann solver for non-linear Euler equations. J. Comput. Phys. 230(8), 2915–2951 (2011). https://doi.org/10.1016/j.jcp.2010.12.043
Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011). https://doi.org/10.1016/j.jcp.2010.11.028
Castro-Dìaz, M.J., Semplice, M.: Third- and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction. Int. J. Numer. Methods Fluid 89(8), 304–325 (2019). https://doi.org/10.1002/fld.4700
Cravero, I., Puppo, G., Semplice, M., Visconti, G.: Cool WENO schemes Comput. Fluids 169, 71–86 (2018). https://doi.org/10.1016/j.compfluid.2017.07.022
Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87(312), 1689–1719 (2018). https://doi.org/10.1090/mcom/3273
Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Scientific Comput. 67, 1219–1246 (2016). https://doi.org/10.1007/s10915-015-0123-3
Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional Central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019). https://doi.org/10.1007/s10915-015-0123-3
Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013). https://doi.org/10.1016/j.jcp.2013.05.018
Dumbser, M., Boscheri, W., Semplice, M.: Central WENO subcell finite volume limiters for ADER Discontinuous Galerkin schemes on fixed and moving unstructured meshes. Commun. Comput. Phys. 25(2), 311–346 (2019). https://doi.org/10.4208/cicp.OA-2018-0069
Dumbser, M., Boscheri, W., Semplice, M., Russo, G.: Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructered meshes. SIAM J. Sci. Comput. 39(6), A2564–A2591 (2017). https://doi.org/10.1137/17M1111036
Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007). https://doi.org/10.1016/j.jcp.2006.06.043
Falcone, M., Paolucci, G., Tozza, S.: Multidimensional smoothness indicators for first-order Hamilton–Jacobi equations. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.109360
Gerster, S., Herty, M.: Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27(3), 639–671 (2020). https://doi.org/10.4208/cicp.OA-2019-0047
Ha, Y., Ho Kim, C., Ju Lee, Y., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232(1), 68–86 (2013). https://doi.org/10.1016/j.jcp.2012.06.016
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987). https://doi.org/10.1016/0021-9991(87)90031-3
Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005). https://doi.org/10.1016/j.jcp.2005.01.023
Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999). https://doi.org/10.1006/jcph.1998.6165
Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)
Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)
Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014). https://doi.org/10.1137/130947568
Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018). https://doi.org/10.1016/j.jcp.2018.09.027
Lahooti, M., Pishevar, A.: A new fourth order central WENO method for 3D hyperbolic conservation laws. Appl. Math. Comput. 218(20), 10258–10270 (2012). https://doi.org/10.1016/j.amc.2012.04.003
Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000). https://doi.org/10.1137/S1064827599359461
Naumann, A., Kolb, O., Semplice, M.: On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Appl. Math. Comput. 325, 252–270 (2018). https://doi.org/10.1016/j.amc.2017.12.041
Puppo, G.: Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25(4), 1382–1415 (2003). https://doi.org/10.1137/S1064827502386712
Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10(5), 1132–1160 (2011). https://doi.org/10.4208/cicp.250909.210111a
Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183(1), 187–209 (2002). https://doi.org/10.1006/jcph.2002.7191
Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016). https://doi.org/10.1007/s10915-015-0038-z
Semplice, M., Visconti, G.: claw1dArena v1.1 (2020). https://doi.org/10.5281/zenodo.2641724
Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108–127 (2002). https://doi.org/10.1006/jcph.2001.6892
Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253 ICASE Report No.97–65 (1997)
Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997). Lecture Notes in Math, vol. 1697, pp. 325–432. Springer, Berlin (1998)
Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009)
Zheng, F., Shu, C.W., Qiu, J.: High order finite difference Hermite WENO schemes for the Hamilton–Jacobi equations on unstructured meshes. Comput. Fluids 183, 53–65 (2019). https://doi.org/10.1016/j.compfluid.2019.02.010
Zhou, J., Cai, L., Zhou, F.Q.: New high-resolution scheme for three-dimensional nonlinear hyperbolic conservation laws. Appl. Math. Comput. 198(2), 770–786 (2008). https://doi.org/10.1016/j.amc.2007.09.017
Zhu, J., Qiu, J.: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 349, 220–232 (2017). https://doi.org/10.1016/j.jcp.2017.08.021
Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017). https://doi.org/10.1007/s10915-017-0486-8
Zhu, J., Qiu, J.: New finite volume weighted essentially nonoscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40(2), A903–A928 (2018). https://doi.org/10.1137/17M1112790
Zhu, J., Shu, C.W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018). https://doi.org/10.1016/j.jcp.2018.09.003
Zhu, J., Shu, C.W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019). https://doi.org/10.1016/j.jcp.2019.04.027
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2023 Internet of Production—390621612 and by INDAM GNCS-2019 grant “Approssimazione numerica di problemi di natura iperbolica ed applicazioni”.
Rights and permissions
About this article
Cite this article
Semplice, M., Visconti, G. Efficient Implementation of Adaptive Order Reconstructions. J Sci Comput 83, 6 (2020). https://doi.org/10.1007/s10915-020-01156-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01156-6
Keywords
- \(\mathsf {CWENOZ}\text{- }\!\mathsf {AO}\)
- Polynomial reconstruction
- Weighted essentially nonoscillatory
- \(\mathsf {CWENOZ}\)
- Adaptive order \(\mathsf {WENO}\)
- Finite volume schemes
- Hyperbolic systems
- Conservation and balance laws