Skip to main content
Log in

A Convergent Finite Element Method for the Compressible Magnetohydrodynamics System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of finite element method for the isentropic compressible magnetohydrodynamics system. We employ quadratic finite elements to approximate the velocity and Nédélec edge elements to approximate the magnetic induction. The continuity equation is approximated by Discontinuous Galerkin method. Based on the renormalized scheme, we derive the stability of the proposed numerical scheme for compressible magnetohydrodynamics equations. With the help of the theory of the topological degree, the existence of solution to the numerical scheme is proved. Some techniques have to be adopted to improve the integrability of density so as to achieve strong convergence of the discrete density. As both meshwidth and timestep size tend to zero, we show that finite element solution converges to a global weak solution of the continuous problem. The results of this paper can be regarded as a numerical version of the existence analysis of the compressible MHD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.F., Bogdankevich, L.S., Rukhadze, A.A.: Principles of Plasma Electrodynamics, Vol. 9 of Springer Series in Electrophysics. Springer, Berlin (1984). Translated from the Russian

    Book  Google Scholar 

  2. Baňas, L., Prohl, A.: Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. Math. Comput. 79, 1957–1999 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics. Springer, New York (1994)

    Book  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Vol. 15 of Springer Series in Computational Mathematics. Springer, New York (1991)

    Book  MATH  Google Scholar 

  6. Cabannes, H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)

    Google Scholar 

  7. Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiuderi, C., Velli, M.: Basics of Plasma Astrophysics. Unitext for Physics. Springer, Milan (2015)

    Book  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Book  MATH  Google Scholar 

  10. Ciuperca, I.S., Feireisl, E., Jai, M., Petrov, A.: A rigorous derivation of the stationary compressible Reynolds equation via the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28, 697–732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Costabel, M., Dauge, M.: Singularities of Maxwell’s equations on polyhedral domains, in analysis, numerics and applications of differential and integral equations (Stuttgart, 1996). Pitman Res. Notes Math. Ser. Longman Harlow 379, 69–76 (1998)

    MATH  Google Scholar 

  13. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Inf. Recherche Opérationnelle Sér. Rouge 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20, 74–97 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dauge, M.: Singularities of corner problems and problems of corner singularities, in Actes du 30ème Congrès d’Analyse Numérique: CANum ’98 (Arles, 1998). ESAIM Proc. Soc. Math. Appl. Indust. Paris 6, 19–40 (1999)

    MathSciNet  Google Scholar 

  18. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  19. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dumbser, M., Casulli, V.: A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state. Appl. Math. Comput. 272, 479–497 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Eymard, R., Gallouët, T., Herbin, R., Latché, J.C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case. Math. Comput. 79, 649–675 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feireisl, E.: Dynamics of Viscous Compressible Fluids, Vol. 26 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    Google Scholar 

  23. Feireisl, E., Karper, T., Michálek, M.: Convergence of a numerical method for the compressible Navier–Stokes system on general domains. Numer. Math. 134, 667–704 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feireisl, E., Karper, T.G., Pokorný, M.: Mathematical Theory of Compressible Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham (2016). Analysis and Numerics, Lecture Notes in Mathematical Fluid Mechanics

    Book  MATH  Google Scholar 

  25. Gallouët, T., Gastaldo, L., Herbin, R., Latché, J.-C.: An unconditionally stable pressure correction scheme for the compressible barotropic Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 42, 303–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gallouët, T., Herbin, R., Latché, J.-C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. I. The isothermal case. Math. Comput. 78, 1333–1352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  29. Ginzburg, V.L.: Propagation of electromagnetic waves in plasma, Translated from the Russian by Royer and Roger; edited by Walter L. Sadowski, D.M. Gallik, Gordon and Breach Science Publishers, Inc., New York (1961)

  30. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). Theory and algorithms

    Book  MATH  Google Scholar 

  31. Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hietel, D., Steiner, K., Struckmeier, J.: A finite-volume particle method for compressible flows. Math. Models Methods Appl. Sci. 10, 1363–1382 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28, 659–695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot B=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  39. Karlsen, K.H., Karper, T.K.: A convergent nonconforming finite element method for compressible Stokes flow. SIAM J. Numer. Anal. 48, 1846–1876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Karlsen, K.H., Karper, T.K.: Convergence of a mixed method for a semi-stationary compressible Stokes system. Math. Comput. 80, 1459–1498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karlsen, K.H., Karper, T.K.: A convergent mixed method for the Stokes approximation of viscous compressible flow. IMA J. Numer. Anal. 32, 725–764 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kulikovskiy, A.G., Lyubimov, G.A.: Magnetohydrodynamics. Addison-Wesley, Reading (1965)

    Google Scholar 

  43. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media, Course of theoretical physics, vol. 8. Translated from the Russian by J. B. Sykes and J. S. Bell, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass (1960)

  44. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and Its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models. Oxford Science Publications (1998)

  45. Monk, P.: Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  46. Moreau, R.: Magnetohydrodynamics, Vol. 3 of Fluid Mechanics and Its Applications. Kluwer Academic Publishers Group, Dordrecht (1990). Translated from the French by A. F. Wright

    Google Scholar 

  47. Pai, S.-I.: Magnetogasdynamics and Plasma Dynamics. Springer, Vienna (1962)

    Book  MATH  Google Scholar 

  48. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math. Model. Numer. Anal. 42, 1065–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stummel, F.: Basic compactness properties of nonconforming and hybrid finite element spaces. RAIRO Anal. Numér. 14, 81–115 (1980)

    MathSciNet  MATH  Google Scholar 

  52. Toscani, G., Boffi, V., Rionero, S. (eds.): Mathematical Aspects of Fluid and Plasma Dynamics, Vol. 1460 of Lecture Notes in Mathematics. Springer, Berlin (1991)

    Google Scholar 

  53. Zarnowski, R., Hoff, D.: A finite-difference scheme for the Navier–Stokes equations of one-dimensional, isentropic, compressible flow. SIAM J. Numer. Anal. 28, 78–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao, J., Hoff, D.: A convergent finite-difference scheme for the Navier–Stokes equations of one-dimensional, nonisentropic, compressible flow. SIAM J. Numer. Anal. 31, 1289–1311 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipeng Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was in part supported by the Major State Research Development Program of China (No. 2016YFB0201304), National Natural Science Foundation of China (No. 11871467), National Magnetic Confinement Fusion Science Program of China (No. 2015GB110003) and Youth Innovation Promotion Association of CAS (2016003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Mao, S. A Convergent Finite Element Method for the Compressible Magnetohydrodynamics System. J Sci Comput 82, 21 (2020). https://doi.org/10.1007/s10915-020-01129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01129-9

Keywords

Navigation