Skip to main content
Log in

Positivity-Preserving Finite Difference WENO Scheme for Ten-Moment Equations with Source Term

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a positivity-preserving finite difference WENO scheme for the Ten-Moment equations with body forces acting as a source in the momentum and energy equations. A positive forward Euler scheme under a CFL condition is first constructed which is combined with an operator splitting approach together with an integrating factor, strong stability preserving Runge–Kutta scheme. The positivity of the forward Euler scheme is obtained under a CFL condition by using a scaling type limiter, while the solution of the source operator is performed exactly and is positive without any restriction on the time step. The proposed method can be used with any WENO reconstruction scheme and we demonstrate it with fifth order accurate WENO-JS, WENO-Z and WENO-AO schemes. An adaptive CFL strategy is developed which can be more efficient than the use of reduced CFL for positivity preservation. Numerical results show that high order accuracy and positivity preservation are achieved on a range of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  Google Scholar 

  2. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  3. Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997). https://doi.org/10.1137/S1064827593260140

    Article  MathSciNet  MATH  Google Scholar 

  4. Berthon, C., Dubroca, B., Sangam, A.: An entropy preserving relaxation scheme for the ten-moments equations with source terms. Commum. Math. Sci. 13(8), 2119–2154 (2015)

    Article  MathSciNet  Google Scholar 

  5. Berthon, C.: Numerical approximations of the 10-moment Gaussian closure. Math. Comput. 75(256), 1809–1831 (2006)

    Article  MathSciNet  Google Scholar 

  6. Berthon, C., Dubroca, B., Sangam, A.: An entropy preserving relaxation scheme for ten-moments equations with source terms. Commun. Math. Sci. 13(8), 2119–2154 (2015)

    Article  MathSciNet  Google Scholar 

  7. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Frontiers in Mathematics Series. Birkhauser, Basel (2004)

    Book  Google Scholar 

  9. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very-high-order WENO schemes. J. Comput. Phys. 228(23), 8481–8524 (2009)

    Article  MathSciNet  Google Scholar 

  10. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Mathematiques & Applications. Ellipses Publications, Salt Lake City (1991)

    MATH  Google Scholar 

  11. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Book  Google Scholar 

  12. Guo, Y., Xiong, T., Shi, Y.: A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations. J. Comput. Phys. 274, 505–523 (2014)

    Article  MathSciNet  Google Scholar 

  13. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  Google Scholar 

  14. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  Google Scholar 

  15. Huang, C., Chen, L.L.: A simple smoothness indicator for the WENO scheme with adaptive order. J. Comput. Phys. 352(Supplement C), 498–515 (2018)

    Article  MathSciNet  Google Scholar 

  16. Isherwood, L., Grant, Z.J., Gottlieb, S.: Strong stability preserving integrating factor Runge–Kutta methods. SIAM J. Numer. Anal. 56(6), 3276–3307 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kumar, R., Chandrashekar, P.: Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Comput. Fluids 190, 49–76 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018)

    Article  MathSciNet  Google Scholar 

  20. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  21. Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1998)

    Article  MathSciNet  Google Scholar 

  22. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5), 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  23. Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59, 72–96 (1998)

    Article  MathSciNet  Google Scholar 

  24. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  25. McDonald, J., Groth, C. P. T.: Numerical modeling of micron-scale flows using the Gaussian moment closure. Paper 2005-5035, AIAA, (2005)

  26. Meena, A.K., Kumar, H.: Robust MUSCL schemes for ten-moment Gaussian closure equations with source terms. Int. J. Finite Vol. 13, 34 (2017)

    MathSciNet  Google Scholar 

  27. Meena, A.K., Kumar, H.: A well-balanced scheme for ten-moment Gaussian closure equations with source term. Z. Angew. Math. Phys. 69(1), 8 (2017)

    Article  MathSciNet  Google Scholar 

  28. Meena, A.K., Kumar, H., Chandrashekar, P.: Positivity-preserving high-order discontinuous Galerkin schemes for ten-moment Gaussian closure equations. J. Comput. Phys. 339, 370–395 (2017)

    Article  MathSciNet  Google Scholar 

  29. Sangam, A.: An HLLC scheme for ten-moments approximation coupled with magnetic field. Int. J. Comput. Sci. Math. 2(1/2), 73–109 (2008)

    Article  MathSciNet  Google Scholar 

  30. Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018)

    Article  MathSciNet  Google Scholar 

  31. Shi, J., Changqing, H., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108–127 (2002)

    Article  Google Scholar 

  32. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  33. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  34. Thomann, A., Zenk, M., Klingenberg, C.: A second-order positivity-preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria: well-balanced scheme for Euler equations with gravity. Int. J. Numer. Methods Fluids 1, 2–3 (2019). https://doi.org/10.1002/fld.4703

    Article  Google Scholar 

  35. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluids dynamics. A Pratical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  36. Waagan, K., Federrath, C., Klingenberg, C.: A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230, 3331–3351 (2011). https://doi.org/10.1016/j.jcp.2011.01.026

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, X., Shu, C.-W.: A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws. SIAM J. Numer. Anal. 48(2), 772–795 (2010)

    Article  MathSciNet  Google Scholar 

  38. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)

    Article  MathSciNet  Google Scholar 

  41. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Rakesh Kumar would like to acknowledge funding support from the National Post-doctoral Fellowship (PDF/2018/002621) administered by SERB-DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Chandrashekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, A.K., Kumar, R. & Chandrashekar, P. Positivity-Preserving Finite Difference WENO Scheme for Ten-Moment Equations with Source Term. J Sci Comput 82, 15 (2020). https://doi.org/10.1007/s10915-019-01110-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01110-1

Keywords

Navigation