Skip to main content
Log in

Accuracy of Stable, High-order Finite Difference Methods for Hyperbolic Systems with Non-smooth Wave Speeds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We derive analytic solutions to the scalar and vector advection equation with variable coefficients in one spatial dimension using Laplace transform methods. These solutions are used to investigate how accuracy and stability are influenced by the presence of discontinuous wave speeds when applying high-order-accurate, skew-symmetric finite difference methods designed for smooth wave speeds. The methods satisfy a summation-by-parts rule with weak enforcement of boundary conditions and formal order of accuracy equal to 2, 3, 4 and 5. We study accuracy, stability and convergence rates for linear wave speeds that are (a) constant, (b) non-constant but smooth, (c) continuous with a discontinuous derivative, and (d) constant with a jump discontinuity. Cases (a) and (b) correspond to smooth wave speeds and yield stable schemes and theoretical convergence rates. Non-smooth wave speeds [cases (c) and (d)], however, reveal reductions in theoretical convergence rates and in the latter case, the presence of an instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  Google Scholar 

  2. Erickson, B.A., Dunham, E.M.: An efficient numerical method for earthquake cycles in heterogeneous media: alternating subbasin and surface-rupturing events on faults crossing a sedimentary basin. J. Geophys. Res. Solid Earth 119, 3290–3316 (2014)

    Article  Google Scholar 

  3. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  4. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)

    Article  MathSciNet  Google Scholar 

  5. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)

    Article  MathSciNet  Google Scholar 

  6. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. App. Math. Comput. 272, 291–308 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Karlstrom, L., Dunham, E.M.: Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma. J. Fluid Mech. 797, 431–470 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kopriva, D.A., Nordström, J., Gassner, G.J.: Error boundedness of discontinuous Galerkin spectral element approximations of hyperbolic problems. J. Sci. Comput. 72(1), 314–330 (2017). https://doi.org/10.1007/s10915-017-0358-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Kozdon, J.E., Dunham, E.M., Nordström, J.: Interaction of waves with frictional interfaces using summation-by-parts difference operators: weak enforcement of nonlinear boundary conditions. J. Sci. Comput. 50(2), 341–367 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press (1974)

  12. Kreiss, H.-O., Scherer, G.: On the existence of energy estimates for difference approximations for hyperbolic systems. In: Technical report, Uppsala University Dept of Scientific Computing Uppsala, Sweden (1977)

  13. La Cognata, C., Nordström, J.: Well-posedness, stability and conservation for a discontinuous interface problem. BIT 56(2), 681–704 (2016)

    Article  MathSciNet  Google Scholar 

  14. Le Veque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  15. Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT 50(1), 85–108 (2010). https://doi.org/10.1007/s10543-010-0249-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)

    Article  MathSciNet  Google Scholar 

  17. Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comput. 30(1), 46–59 (2008). https://doi.org/10.1137/060654943

    Article  MathSciNet  MATH  Google Scholar 

  18. Nordström, J., Frenander, H.: On long time error bounds for the wave equation on second order form. J. Sci. Comput. 76(3), 1327–1336 (2018). https://doi.org/10.1007/s10915-018-0667-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Nordström, J., Ruggiu, A.A.: On conservation and stability properties for summation-by-parts schemes. J. Comput. Phys. 344, 451–464 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021

    Article  MathSciNet  MATH  Google Scholar 

  22. Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017)

    Article  MathSciNet  Google Scholar 

  23. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)

    Article  MathSciNet  Google Scholar 

  24. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work benefited from helpful comments from two anonymous reviewers. B.A.E. was supported through the NSF under Award No. EAR-1547603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany A. Erickson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Detailed Analytic Solutions

Below we provide detailed analytic solutions for the scalar and vector equations considered. The code for computing these is available online at https://github.com/brittany-erickson/analytic_wave/.

1.1 A.1 Analytic Solution to the Scalar Equation

The scalar equation (1) has analytic solution given by (14) which requires the calculation of \(I_a(x)\) and \(\xi (t,x)\) given by (2), (15), respectively. These are provided below for the four cases of wave speeds considered in Sect. 2.3.

For case 1,

$$\begin{aligned} I_a(x)&= x, \end{aligned}$$
(82a)
$$\begin{aligned} \xi (t,x)&= x-t. \end{aligned}$$
(82b)

For case 2,

$$\begin{aligned} I_a(x)&= \frac{1}{\epsilon }\ln \left| 1 + \epsilon x\right| \end{aligned}$$
(83a)
$$\begin{aligned} \xi (t,x)&= \frac{1}{\epsilon }\left[ e^{-\epsilon t}(1 + \epsilon x) -1 \right] . \end{aligned}$$
(83b)

For case 3,

$$\begin{aligned} I_a(x)&= x H(x_0 - x) + \left( x_0 + \frac{1}{\epsilon }\ln |1-\epsilon x_0 + \epsilon x | \right) H(x - x_0), \end{aligned}$$
(84a)
$$\begin{aligned} \xi (t,x)&= d_1(t,x) H(x_0 - x)H(x_0 - d_1(t,x)) \nonumber \\&\quad +\, d_2(t,x)H(x-x_0)H(x_0 - d_2(t,x)) \nonumber \\&\quad +\,d_3(t,x)H(x-x_0)H(d_3(t,x)-x_0), \end{aligned}$$
(84b)

where

$$\begin{aligned} d_1(t,x)&= x-t, \end{aligned}$$
(85a)
$$\begin{aligned} d_2(t,x)&= x_0 + \frac{1}{\epsilon } \ln | 1 - \epsilon x_0 + \epsilon x| - t, \end{aligned}$$
(85b)
$$\begin{aligned} d_3(t,x)&= \frac{1}{\epsilon } \left[ (1 - \epsilon x_0 + \epsilon x)e^{-\epsilon t} - 1 + \epsilon x_0\right] . \end{aligned}$$
(85c)

For case 4,

$$\begin{aligned} I_a(x)&= x H(x_0 - x) + \left[ x_0 + \frac{x-x_0}{1 + \epsilon x_0}\right] H(x-x_0), \end{aligned}$$
(86a)
$$\begin{aligned} \xi (t,x)&= d_4(t,x) H(x_0 - x)H(x_0 - d_4(t,x)) \nonumber \\&\quad +\,d_5(t,x)H(x-x_0)H(x_0 - d_5(t,x)) \nonumber \\&\quad +\,d_6(t,x)H(x-x_0)H(d_6(t,x)-x_0), \end{aligned}$$
(86b)

where

$$\begin{aligned} d_4(t,x)&= x-t, \end{aligned}$$
(87a)
$$\begin{aligned} d_5(t,x)&= x_0 + \frac{x-x_0}{1 + \epsilon x_0} - t, \end{aligned}$$
(87b)
$$\begin{aligned} d_6(t,x)&= x - t(1 + \epsilon x_0). \end{aligned}$$
(87c)

1.2 A.2 Analytic Solution to the Vector Equation

The vector equation (37) with initial/boundary conditions given by (38)–(39) has analytic solution given by (55) which requires the calculation of \(I_a(x), I_b(x)\) and three characteristic variables \(\xi (t,x), \omega _n(t,x)\) and \(\gamma _n\) given by (2) and (56) respectively. These are provided below for the four cases of wave speeds considered in Sect. 3.4.

For case 1,

$$\begin{aligned} I_a(x)&= x, \end{aligned}$$
(88a)
$$\begin{aligned} I_b(x)&= x, \end{aligned}$$
(88b)
$$\begin{aligned} \xi (t,x)&= x-t, \end{aligned}$$
(88c)
$$\begin{aligned} \omega _n(t,x)&= x + t_n - t, \end{aligned}$$
(88d)
$$\begin{aligned} \gamma _n(t,x)&= -x + t_n - t. \end{aligned}$$
(88e)

For case 2,

$$\begin{aligned} I_a(x)&= -\frac{1}{\epsilon } \ln |1 - \epsilon x|, \end{aligned}$$
(89a)
$$\begin{aligned} I_b(x)&= \frac{1}{\epsilon } \ln |1 + \epsilon x|, \end{aligned}$$
(89b)
$$\begin{aligned} \xi (t,x)&= -\frac{1}{\epsilon }\left[ (1-\epsilon x)e^{\epsilon t} - 1\right] , \end{aligned}$$
(89c)
$$\begin{aligned} \omega _n(t,x) =&-\frac{1}{\epsilon }\left[ (1-\epsilon x)e^{\epsilon (t-t_n)} - 1\right] , \end{aligned}$$
(89d)
$$\begin{aligned} \gamma _n(t,x)&= -\frac{1}{\epsilon }\left[ (1+\epsilon x)e^{\epsilon (t-t_n)} - 1\right] . \end{aligned}$$
(89e)

For case 3,

$$\begin{aligned} I_a(x)&= -\frac{1}{\epsilon } \ln |1 - \epsilon x| H(x_0 - x) \nonumber \\&\quad +\,\left[ -\frac{1}{\epsilon } \ln |1 - \epsilon x_0| + \frac{x - x_0}{1 - \epsilon x_0} \right] H(x - x_0), \end{aligned}$$
(90a)
$$\begin{aligned} I_b(x)&= \frac{1}{\epsilon } \ln |1 + \epsilon x| H(x_0 - x) \nonumber \\&\quad +\,\left[ \frac{1}{\epsilon } \ln |1 + \epsilon x_0| + \frac{x - x_0}{1 + \epsilon x_0} \right] H(x - x_0), \end{aligned}$$
(90b)
$$\begin{aligned} \xi (t,x)&= k_1^{-}(t,x) H(x_0 - x)H(x_0 - k_1^{-}(x,t)) \nonumber \\&\quad +\, k_2^{-}(t,x)H(x-x_0)H(x_0 - k_2^{-}(x,t)) \nonumber \\&\quad +\,k_3(t,x)H(x-x_0)H(k_3(t,x)-x_0), \end{aligned}$$
(90c)
$$\begin{aligned} \omega _n(t,x)&= k_1^{-}(t-t_n,x) H(x_0 - x)H(x_0 - k_1^{-}(x,t-t_n)) \nonumber \\&\quad +\,k_2^{-}(t-t_n,x)H(x-x_0)H(x_0 - k_2^{-}(t-t_n,x)) \nonumber \\&\quad +\,k_3(t-t_n,x)H(x-x_0)H(k_3(t-t_n,x)-x_0) \nonumber \\&\quad +\,k_5^-(t,x)H(x_0-x)H(k_5^-(t,x)-x_0), \end{aligned}$$
(90d)
$$\begin{aligned} \gamma _n(t,x)&= k_1^{+}(t-t_n,x) H(x_0 - x)H(x_0 - k_1^{+}(t-t_n,x)) \nonumber \\&\quad +\,k_2^{+}(t-t_n,x)H(x-x_0)H(x_0 - k_2^{+}(x,t-t_n)) \nonumber \\&\quad +\,k_4(t,x)H(x-x_0)H(k_4(t,x)-x_0) \nonumber \\&\quad +\,k_5^+(t,x)H(x_0-x)H(k_5^+(t,x)-x_0), \end{aligned}$$
(90e)

where

$$\begin{aligned} k_1^\pm (t,x)&= -\frac{1}{\epsilon }\left[ (1\pm \epsilon x)e^{\epsilon t} - 1\right] , \end{aligned}$$
(91a)
$$\begin{aligned} k_2^\pm (t,x)&= -\frac{1}{\epsilon }\left[ (1\pm \epsilon x_0)e^{\epsilon (t \pm [x-x_0]/[1\pm \epsilon x_0]} - 1\right] , \end{aligned}$$
(91b)
$$\begin{aligned} k_3(t,x)&= x - (1-\epsilon x_0)t, \end{aligned}$$
(91c)
$$\begin{aligned} k_4(t,x)&= x_0 + (1-\epsilon x_0)\left( \frac{1}{\epsilon } \ln \left| \frac{1-\epsilon x_0}{1 + \epsilon x_0}\right| - \frac{x - x_0}{1+\epsilon x_0} + t_n - t\right) , \end{aligned}$$
(91d)
$$\begin{aligned} k_5^\pm (t,x)&= x_0 + (1-\epsilon x_0)\left( \frac{1}{\epsilon } \ln \left| \frac{1 - \epsilon x_0}{1 \pm \epsilon x}\right| + t_n - t\right) . \end{aligned}$$
(91e)

For case 4,

$$\begin{aligned} I_a(x)&= x H(x_0 - x) + \left[ x_0 + \frac{x - x_0}{1 - \epsilon x_0}\right] H(x - x_0), \end{aligned}$$
(92a)
$$\begin{aligned} I_b(x)&= x H(x_0 - x) + \left[ x_0 + \frac{x - x_0}{1 + \epsilon x_0}\right] H(x - x_0), \end{aligned}$$
(92b)
$$\begin{aligned} \xi (t,x)&= (x-t)H(x_0 - x) \nonumber \\&\quad +\, k_6(t,x)H(x - x_0)H(x_0 - k_6(t,x)) \nonumber \\&\quad +\,k_7(t,x)H(x-x_0)H(k_7(t,x)-x_0) \end{aligned}$$
(92c)
$$\begin{aligned} \omega _n(t,x)&= k_8(t,x)H(x_0 - x)H(x_0 - k_8(t,x)) \nonumber \\&\quad +\,k_6(t-t_n,x)H(x - x_0)H(x_0 - k_6(t-t_n,x)) \nonumber \\&\quad +\,k_7(t-t_n,x)H(x-x_0)H(k_7(t-t_n,x)-x_0) \nonumber \\&\quad +\,k_9(t,x)H(x_0-x)H(k_9(t,x)-x_0) \end{aligned}$$
(92d)
$$\begin{aligned} \gamma _n(t,x)&=k_8(t,-x)H(x_0 - x)H(x_0 - k_8(t,-x)) \nonumber \\&\quad +\,k_9(t,-x)H(x_0 - x)H(k_9(t,-x) - x_0) \nonumber \\&\quad +\,k_{10}(t,x)H(x-x_0)H(x_0 - k_{10}(t,x)) \end{aligned}$$
(92e)
$$\begin{aligned}&\quad +\,_{11}(t,x)H(x-x_0)H(k_{11}(t,x)-x_0), \end{aligned}$$
(92f)

where

$$\begin{aligned} k_6(t,x)&= x_0 + \frac{x - x_0}{1 - \epsilon x_0} - t, \end{aligned}$$
(93a)
$$\begin{aligned} k_7(t,x)&= x - (1-\epsilon x_0)t, \end{aligned}$$
(93b)
$$\begin{aligned} k_8(t,x)&= x + t_n - t, \end{aligned}$$
(93c)
$$\begin{aligned} k_9(t,x)&= x_0 + (1-\epsilon x_0)(x-x_0 + t_n - t), \end{aligned}$$
(93d)
$$\begin{aligned} k_{10}(t,x)&= -x_0 - \frac{x-x_0}{1 + \epsilon x_0} + t_n - t, \end{aligned}$$
(93e)
$$\begin{aligned} k_{11}(t,x)&= x_0 + (1-\epsilon x_0)\left( -1 - \frac{x-x_0}{1 + \epsilon x_0} + t_n - t\right) . \end{aligned}$$
(93f)

Including an Interface

By placing an interface at \(x = 1/2\), the vector equation (37) becomes

$$\begin{aligned} u_t^L + a^L(x)u_x^L&= 0, \end{aligned}$$
(94a)
$$\begin{aligned} v_t^L - b^L(x)v_x^L&= 0, \end{aligned}$$
(94b)
$$\begin{aligned} u^L(t,0)&= \alpha v^L(t,0), \end{aligned}$$
(94c)
$$\begin{aligned} v^L(t,1/2)&= v^R(t,1/2), \end{aligned}$$
(94d)
$$\begin{aligned} u^L(0,x)&= f^L(x), \end{aligned}$$
(94e)
$$\begin{aligned} v^L(0,x)&= 0 \end{aligned}$$
(94f)

and

$$\begin{aligned} u_t^R + a^R(x)u_x^R&= 0, \end{aligned}$$
(95a)
$$\begin{aligned} v_t^R - b^R(x)v_x^R&= 0, \end{aligned}$$
(95b)
$$\begin{aligned} v^R(t,1)&= \beta u^R(t,1), \end{aligned}$$
(95c)
$$\begin{aligned} u^R(t,1/2)&= u^L(t,1/2), \end{aligned}$$
(95d)
$$\begin{aligned} u^R(0,x)&= f^R(x), \end{aligned}$$
(95e)
$$\begin{aligned} v^R(0,x)&= 0, \end{aligned}$$
(95f)

where \(\alpha = \sqrt{b^L(0)/a^L(0)}\), \(\beta = \sqrt{a^R(1)/b^R(1)}\). The energy method applied to (94)–(95) yields

$$\begin{aligned} \frac{d \left( ||u^L||_2^2 + ||v^L||_2^2 + ||u^R||_2^2 + ||v^R||_2^2 \right) }{dt} =&\left[ a^R(1/2) - a^L(1/2)\right] u^L(t,0.5)^2 \nonumber \\&- \left[ b^R(1/2) - b^L(1/2)\right] v^R(t,1/2)^2 + \nonumber \\&+ \displaystyle \int _0^{1/2} a_x^L (u^L)^2 - b_x^L (v^L)^2 dx \nonumber \\&+\displaystyle \int _{1/2}^1 a_x^R (u^R)^2 - b_x^R (v^R)^2 dx \end{aligned}$$
(96)

and again we note that the first two terms on the right of (96) are zero if the wave speeds are continuous across the interface.

The discrete equations are given by

$$\begin{aligned} \mathbf{u}^L_t + \frac{1}{2}\left[ \mathbf{A}^L\mathbf{D} + \mathbf{DA}^L\right] \mathbf{u}^L - \frac{1}{2}{} \mathbf{U}^L\mathbf{D}{} \mathbf{a}^L&= \sigma _1\mathbf{H}^{-1}(u^L_0 - \alpha v^L_0)\mathbf{e}_0\nonumber \\&\quad + \sigma _2\mathbf{H}^{-1}(u_N^L - u_0^R)\mathbf{e}_N \end{aligned}$$
(97a)
$$\begin{aligned} \mathbf{v}^L_t - \frac{1}{2}\left[ \mathbf{B}^L\mathbf{D} + \mathbf{DB}^L\right] \mathbf{v}^L + \frac{1}{2}{} \mathbf{V}^L\mathbf{D}{} \mathbf{b}^L&= \sigma _3\mathbf{H}^{-1}(v^L_N - v^R_0)\mathbf{e}_N, \end{aligned}$$
(97b)
$$\begin{aligned} \mathbf{u}^R_t + \frac{1}{2}\left[ \mathbf{A}^R\mathbf{D} + \mathbf{DA}^R\right] \mathbf{u}^R - \frac{1}{2}{} \mathbf{U}^R\mathbf{D}{} \mathbf{a}^R&= \sigma _4\mathbf{H}^{-1}(u^R_0 - u^L_N)\mathbf{e}_0 \end{aligned}$$
(97c)
$$\begin{aligned} \mathbf{v}^R_t - \frac{1}{2}\left[ \mathbf{B}^R\mathbf{D} + \mathbf{DB}^R\right] \mathbf{v}^R + \frac{1}{2}{} \mathbf{V}^R\mathbf{D}{} \mathbf{b}^R&= \sigma _5\mathbf{H}^{-1}(v^R_0 - v^L_N)\mathbf{e}_0\nonumber \\&\quad +\, \sigma _6\mathbf{H}^{-1}(v^R_N - \beta u^R_N)\mathbf{e}_N. \end{aligned}$$
(97d)

A discrete energy estimate can be obtained as in previous sections, yielding

$$\begin{aligned} \frac{d\left( ||\mathbf{u}^L||^2_\mathbf{H} + ||\mathbf{v}^L||^2_\mathbf{H} + ||\mathbf{u}^R||^2_\mathbf{H} + ||\mathbf{v}^R||^2_\mathbf{H} \right) }{dt}&= (\mathbf{u}^L,\mathbf{U}^L \mathbf{Da}^L)_\mathbf{H} + (\mathbf{v}^L,\mathbf{V}^L \mathbf{Db}^L)_\mathbf{H} \nonumber \\&\quad +\, (\mathbf{u}^R,\mathbf{U}^R \mathbf{Da}^R)_\mathbf{H} + (\mathbf{v}^R,\mathbf{V}^R \mathbf{Db}^R)_\mathbf{H}\nonumber \\&\quad +\, \left( a_0^R - a_N^L\right) (u_N^L)^2 \nonumber \\&\quad -\,\left( b_0^R - b_N^L\right) (v_0^R)^2 \nonumber \\&\quad +\, {\mathbf{y}_0}^T \mathbf{M}_0 \mathbf{y}_0 + {\mathbf{y}_N}^T \mathbf{M}_N \mathbf{y}_N \nonumber \\&\quad +\, {\mathbf{y}_1}^T \mathbf{M}_1 \mathbf{y}_1 + {\mathbf{y}_2}^T \mathbf{M}_2 \mathbf{y}_2 \end{aligned}$$
(98)

where matrices

$$\begin{aligned} \mathbf{M}_0&= \begin{bmatrix} a_0^L + 2\sigma _1 \quad&\quad -\alpha \sigma _1\\ -\alpha \sigma _1&\quad -b_0^L \end{bmatrix}, \quad \quad \mathbf{M}_N = \begin{bmatrix} -a_N^R&-\beta \sigma _6\\ -\beta \sigma _6&\quad 2\sigma _6 + b_N^R \end{bmatrix}, \end{aligned}$$
(99a)
$$\begin{aligned} \mathbf{M}_1&= \begin{bmatrix} -a_0^R + 2\sigma _2 \quad&\quad -\sigma _2 - \sigma _4\\ -\sigma _2 - \sigma _4&\quad a_0^R + 2 \sigma _4 \end{bmatrix}, \quad \mathbf{M}_2 = \begin{bmatrix} b_N^L + 2\sigma _3 \quad&\quad -\sigma _3 - \sigma _5\\ -\sigma _3 - \sigma _5&\quad -b_N^L + 2\sigma _5 \end{bmatrix} \end{aligned}$$
(99b)

and vectors \(\mathbf{y}_0^T = [u_0^L \quad v_0^L], \mathbf{y}_N^T = [u_N^R \quad v_N^R], \mathbf{y}_1^T = [u_N^L \quad u_0^R], \mathbf{y}_2^T = [v_N^L \quad v_0^R]\). The semi-discrete estimate (98) mimics the continuous estimate (96), with some additional dissipation if the matrices (99) are negative semi-definite. This can be accomplished by choosing for the boundary SAT terms \(\sigma _1 = -a_0^L\), \(\sigma _6 = -b_N^R\), and interface penalties corresponding to full upwinding, namely \(\sigma _2 = \sigma _5 = 0\), \(\sigma _3 = -b_N^L, \sigma _4 = -a_0^R\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, B.A., O’Reilly, O. & Nordström, J. Accuracy of Stable, High-order Finite Difference Methods for Hyperbolic Systems with Non-smooth Wave Speeds. J Sci Comput 81, 2356–2387 (2019). https://doi.org/10.1007/s10915-019-01088-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01088-w

Keywords

Mathematics Subject Classification

Navigation