Abstract
In our earlier work (Cockburn et al. in J Sci Comput 79(3):1777–1800, 2019), we approximated solutions of a general class of scalar parabolic semilinear PDEs by an interpolatory hybridizable discontinuous Galerkin (interpolatory HDG) method. This method reduces the computational cost compared to standard HDG since the HDG matrices are assembled once before the time integration. Interpolatory HDG also achieves optimal convergence rates; however, we did not observe superconvergence after an element-by-element postprocessing. In this work, we revisit the Interpolatory HDG method for reaction diffusion problems, and use the postprocessed approximate solution to evaluate the nonlinear term. We prove this simple change restores the superconvergence and keeps the computational advantages of the Interpolatory HDG method. We present numerical results to illustrate the convergence theory and the performance of the method.
Similar content being viewed by others
References
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, 3rd edn., vol. 15, Springer, New York (2008)
Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81(277), 107–129 (2012)
Chen, C.M., Larsson, S., Zhang, N.Y.: Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J. Numer. Anal. 9(4), 507–524 (1989)
Chen, Z., Douglas Jr., J.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mater. Appl. Comput. 10(2), 137–160 (1991)
Christie, I., Griffiths, D.F., Mitchell, A.R., Sanz-Serna, J.M.: Product approximation for nonlinear problems in the finite element method. IMA J. Numer. Anal. 1(3), 253–266 (1981)
Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G.R., Brezzi, F., Cagniani, A., Georgoulis, E.H. (eds.), Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes for Computer Science Engineering, vol. 114, Springer, Berlin. LMS Durham Symposia Funded by the London Mathematical Society. Durham, UK, July 8–16 (2014)
Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 5, 2nd edn, pp. 141–203. Wiley, Chichester (2018)
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)
Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)
Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)
Cockburn, B., Fu, G., Sayas, F.-J.: Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86(306), 1609–1641 (2017)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)
Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79(271), 1351–1367 (2010)
Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016)
Cockburn, B., Shen, J.: An algorithm for stabilizing Hybridizable discontinuous Galerkin methods for nonlinear elasticity. RINAM 1(1), 1–20 (2019)
Cockburn, B., Singler, J.R., Zhang, Y.: Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput. 79(3), 1777–1800 (2019)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)
Di Pietro, D .A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris Ser. I 353, 31–34 (2015)
Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)
Dickinson, B.T., Singler, J.R.: Nonlinear model reduction using group proper orthogonal decomposition. Int. J. Numer. Anal. Model. 7(2), 356–372 (2010)
Douglas Jr., J., Dupont, T.: The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures. Math. Comput. 20(130), 360–389 (1975)
Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225–244 (1983)
Fletcher, C.A.J.: Time-splitting and the group finite element formulation. In: Computational Techniques and Applications: CTAC-83 (Sydney, 1983)
Kabaria, H., Lew, A.J., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)
Kim, D., Park, E.-J., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51(2), 267–288 (2014)
Larsson, S., Thomée, V., Zhang, N.Y.: Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11(1), 105–124 (1989)
López Marcos, J .C., Sanz-Serna, J .M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 8(1), 71–84 (1988)
Moro, D., Nguyen, N.-C., Peraire, J.: A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Eng. 91, 950–970 (2012)
Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231, 5955–5988 (2012)
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)
Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations (AIAA paper 2010-362). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010)
Peraire, J., Nguyen, N. C., Cockburn, V: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations (AIAA paper 2010-363). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010)
Sanz-Serna, J.M., Abia, L.: Interpolation of the coefficients in nonlinear elliptic Galerkin procedures. SIAM J. Numer. Anal. 21(1), 77–83 (1984)
Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)
Terrana, S., Nguyen, N.C., Bonet, J., Peraire, J.: A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures. Comput. Methods Appl. Mech. Eng. 352, 561–585 (2019)
Tourigny, Y.: Product approximation for nonlinear Klein–Gordon equations. IMA J. Numer. Anal. 10(3), 449–462 (1990)
Wang, C.: Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations. Numer. Methods Partial Differ. Equ. 27(2), 387–398 (2011)
Wang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear parabolic equations. Numer. Methods Partial Differ. Equ. 31(6), 1713–1741 (2015)
Wheeler, M.F.: A priori \(L_{2}\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)
Xie, Z., Chen, C.: The interpolated coefficient FEM and its application in computing the multiple solutions of semilinear elliptic problems. Int. J. Numer. Anal. Model. 2(1), 97–106 (2005)
Xiong, Z., Chen, C.: Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem. Appl. Math. Comput. 181(2), 1577–1584 (2006)
Xiong, Z., Chen, C.: Superconvergence of triangular quadratic finite element with interpolated coefficients for semilinear parabolic equation. Appl. Math. Comput. 184(2), 901–907 (2007)
Xiong, Z., Chen, Y., Zhang, Y.: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation. J. Comput. Appl. Math. 214(1), 313–317 (2008)
Zhu, J., Zhang, Y.-T., Newman, S.A., Alber, M.: Application of discontinuous Galerkin methods for reaction–diffusion systems in developmental biology. J. Sci. Comput. 40(1–3), 391–418 (2009)
Acknowledgements
G. Chen is supported by National natural science Foundation of China (NSFC) under Grant Number 11801063 and China Postdoctoral Science Foundation under Grant Number 2018M633339. The research of Y. Zhang is partially supported by the US National Science Foundation (NSF) under Grant Number DMS-1619904.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
Recall the steady state problem (24) from Sect. 3.2.4, which we repeat here for convenience: let \((\overline{\varvec{q}}_h,{\overline{u}}_h,\widehat{{{\overline{u}}}}_h)\in \varvec{V}_h\times W_h\times M_h\) be the solution of
for all \((\varvec{r}_h,v_h,{\widehat{v}}_h)\in \varvec{V}_h\times W_h\times M_h\). Since \( \varPi _W \) commutes with the time derivative, taking the partial derivative of (32) with respect to t shows \((\partial _t \overline{\varvec{q}}_h,\partial _t{\overline{u}}_h,\partial _t\widehat{{{\overline{u}}}}_h)\in \varvec{V}_h\times W_h\times M_h\) is the solution of
for all \((\varvec{r}_h,v_h,{\widehat{v}}_h)\in \varvec{V}_h\times W_h\times M_h\).
The proof of the following lemma is very similar to a proof in [13], hence we omit it here.
Lemma 6.1
For \(\varepsilon _h^{\overline{\varvec{q}}}=\varvec{\varPi }_{V}\varvec{q}- \overline{\varvec{q}}_h \), \( \varepsilon _h^{ {{\overline{u}}}}=\varPi _{W} {u}-{{\overline{u}}}_h \), and \( \varepsilon _h^{ \widehat{\overline{u}}}=P_M u-\widehat{{{\overline{u}}}}_h\), we have
for all \((\varvec{r}_h,v_h,{{\widehat{v}}}_h)\in \varvec{V}_h\times W_h\times M_h\).
The next step is the consideration of the dual problem (10), which we again repeat for convenience:
By the assumption at the beginning of Sect. 3, this boundary value problem admits the regularity estimate
for all \(\varTheta \in L^2(\varOmega )\).
Lemma 6.2
We have
Proof
Let \(\varTheta = \varepsilon _h^{{{\overline{u}}}}\) in the dual problem (34), and take \((\varvec{r}_h,v_h,{{\widehat{v}}}_h) = (-\,\varvec{\varPi }_V\varvec{\varPhi }, \varPi _W\varPsi ,P_M \varPsi )\) in the definition of \( {\mathscr {B}} \) (16) to get
On the other hand, take \((\varvec{r}_h,v_h,{{\widehat{v}}}_h) = (-\,\varvec{\varPi }_V\varvec{\varPhi }, \varPi _W\varPsi ,P_M \varPsi )\) in (33) to get
Comparing the above two equalities gives
Hence, by the regularity of the dual PDE (35), we have
Next, take \((\varvec{r}_h,v_h,{\widehat{v}}_h)=(\varepsilon _h^{\overline{\varvec{q}}},\varepsilon _h^{{{\overline{u}}}},\varepsilon _h^{\widehat{{{\overline{u}}}}})\) in (33) to obtain
This implies
Next, use \(h\le 1\) and substitute (37) into (36) to yield the result. \(\square \)
Following the same steps, we obtain the following result:
Lemma 6.3
We have
Rights and permissions
About this article
Cite this article
Chen, G., Cockburn, B., Singler, J. et al. Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG\(_{k}\) Method. J Sci Comput 81, 2188–2212 (2019). https://doi.org/10.1007/s10915-019-01081-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01081-3