Awanou, G.: Pseudo transient continuation and time marching methods for Monge–Ampère type equations. Adv. Comput. Math. 41(4), 907–935 (2015)
MathSciNet
Article
Google Scholar
Bakelman, I.J.: Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer, Berlin (2012)
MATH
Google Scholar
Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
MathSciNet
Article
Google Scholar
Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)
MathSciNet
Article
Google Scholar
Brenner, S., Gudi, T., Neilan, M., Sung, L.: \({C}^0\) penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80(276), 1979–1995 (2011)
Article
Google Scholar
Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 46(5), 979–1001 (2012)
Article
Google Scholar
Caboussat, A., Glowinski, R., Gourzoulidis, D.: A least-squares/relaxation method for the numerical solution of the three-dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 77(1), 53–78 (2018)
MathSciNet
Article
Google Scholar
Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(3), 780–810 (2013)
MathSciNet
Article
Google Scholar
Caffarelli, L.A.: Interior \({W}^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)
MathSciNet
Article
Google Scholar
Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43. American Mathematical Society, Providence (1995)
MATH
Google Scholar
Caffarelli, L.A., Milman, M.: Monge–Ampère equation: applications to geometry and optimization. In: NSF-CBMS Conference on the Monge–Ampère Equation, Applications to Geometry and Optimization, July 9–13, 1997, Florida Atlantic University, vol. 226. American Mathematical Soc. (1999)
Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications, vol. 130. SIAM, Philadelphia (2013)
MATH
Google Scholar
De Philippis, G., Figalli, A.: Sobolev regularity for Monge–Ampère type equations. SIAM J. Math. Anal. 45(3), 1812–1824 (2013)
MathSciNet
Article
Google Scholar
Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55(2), 205–267 (2013)
MathSciNet
Article
Google Scholar
Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)
MathSciNet
Article
Google Scholar
Froese, B.D.: A numerical method for the elliptic Monge–Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012)
Article
Google Scholar
Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)
MathSciNet
Article
Google Scholar
Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)
MathSciNet
Article
Google Scholar
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)
MATH
Google Scholar
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). (2nd printing: 2008)
Book
Google Scholar
Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. SIAM, Philadelphia (2015)
Book
Google Scholar
Glowinski, R., Liu, H., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 79(1), 1–47 (2019)
MathSciNet
Article
Google Scholar
Glowinski, R., Osher, S.J., Yin, W.: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Berlin (2017)
MATH
Google Scholar
Kazdan, J.L.: Prescribing the curvature of a Riemannian manifold. In: Conference Board of the Mathematical Sciences (1985)
Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103(1), 155–169 (2006)
MathSciNet
Article
Google Scholar
Mirebeau, J.M.: Discretization of the 3D Monge–Ampère operator, between wide stencils and power diagrams. ESAIM Math. Modell. Numer. Anal. 49(5), 1511–1523 (2015)
MathSciNet
Article
Google Scholar
Mohammadi, B.: Optimal transport, shape optimization and global minimization. C. R. Math. 344(9), 591–596 (2007)
MathSciNet
Article
Google Scholar
Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation. Numer. Math. 115(3), 371–394 (2010)
MathSciNet
Article
Google Scholar
Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)
MathSciNet
Article
Google Scholar
Sorensen, D.C., Glowinski, R.: A quadratically constrained minimization problem arising from PDE of Monge–Ampère type. Numer. Algorithms 53(1), 53–66 (2010)
MathSciNet
Article
Google Scholar
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
MATH
Google Scholar