Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
MATH
Google Scholar
Bao, W., Jaksch, D.: An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 41, 1406–1426 (2003)
MathSciNet
MATH
Google Scholar
Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)
MathSciNet
MATH
Google Scholar
Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)
MathSciNet
MATH
Google Scholar
Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose–Einstein condensates. SIAM J. Numer. Anal. 55, 1387–1411 (2017)
MathSciNet
MATH
Google Scholar
Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)
MathSciNet
MATH
Google Scholar
Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80, 189–201 (2007)
MathSciNet
MATH
Google Scholar
Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators. Appl. Numer. Math. 59, 568–581 (2009)
MathSciNet
MATH
Google Scholar
Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102, 367–381 (2006)
MathSciNet
MATH
Google Scholar
Calvo, M.P., Portillo, A.M.: Variable step implementation of ETD methods for semilinear problems. Appl. Math. Comput. 196, 627–637 (2008)
MathSciNet
MATH
Google Scholar
Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012)
MathSciNet
MATH
Google Scholar
Chan, T.F., Lee, D., Shen, L.: Stable explicit schemes for equations of the Schrödinger type. SIAM J. Numer. Anal. 23, 274–281 (1986)
MathSciNet
MATH
Google Scholar
Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)
MathSciNet
MATH
Google Scholar
Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)
MathSciNet
MATH
Google Scholar
Cryer, C.W.: The difference analogue of Gauss’ theorem. SIAM J. Numer. Anal. 4, 155–162 (1967)
MathSciNet
MATH
Google Scholar
Fei, Z., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)
MathSciNet
MATH
Google Scholar
Göckler, T., Grimm, V.: Uniform approximation of \(\varphi \)-functions in exponential integrators by a rational Krylov subspace method with simple poles. SIAM J. Matrix Anal. Appl. 35, 1467–1489 (2014)
MathSciNet
MATH
Google Scholar
Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
MATH
Google Scholar
Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)
MathSciNet
MATH
Google Scholar
Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47, 786–803 (2009)
MathSciNet
MATH
Google Scholar
Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
MathSciNet
MATH
Google Scholar
Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)
MathSciNet
MATH
Google Scholar
Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 7288 (2005)
MathSciNet
MATH
Google Scholar
Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)
MATH
Google Scholar
Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)
MATH
Google Scholar
Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, New York (1967)
MATH
Google Scholar
Minchev, B., Wright, W.M.: A review of exponential integrators for semilinear problems, Technical Report 2/05. Department of Mathematical Sciences, NTNU, Norway (2005)
Niesen, J., Wright, W.M.: Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38, 22:1–22:19 (2012)
MathSciNet
MATH
Google Scholar
Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)
MathSciNet
MATH
Google Scholar
Schaefer, I., Tal-Ezer, H., Kosloff, R.: Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. J. Comput. Phys. 343, 368–413 (2017)
MathSciNet
MATH
Google Scholar
Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Caratheodory–Fejer approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)
MathSciNet
MATH
Google Scholar
Skaflestad, B., Wright, W.M.: The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer. Math. 59, 783–799 (2009)
MathSciNet
MATH
Google Scholar
Suhov, A.Y.: A spectral method for the time evolution in parabolic problems. J. Sci. Comput. 29, 201–217 (2006)
MathSciNet
MATH
Google Scholar
Suhov, A.Y.: An accurate polynomial approximation of exponential integrators. J. Sci. Comput. 60, 684–698 (2014)
MathSciNet
MATH
Google Scholar
Tal-Ezer, H.: On restart and error estimation for Krylov approximation of \(w = f(A)v\). SIAM J. Sci. Comput. 29, 2426–2441 (2007)
MathSciNet
MATH
Google Scholar
Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3971 (1984)
Google Scholar
Toh, K.-C., Trefethen, L.N.: The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl. 21, 145–165 (1999)
MathSciNet
MATH
Google Scholar
Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006)
MathSciNet
MATH
Google Scholar
Tokman, M., Loffeld, J., Tranquilli, P.: New adaptive exponential propagation iterative methods of Runge–Kutta type. SIAM J. Sci. Comput. 34, A2650–A2669 (2012)
MathSciNet
MATH
Google Scholar
Rainwater, G., Tokman, M.: A new class of split exponential propagation iterative methods of Runge–Kutta type (sEPIRK) for semilinear systems of ODEs. J. Comput. Phys. 269, 40–60 (2014)
MathSciNet
MATH
Google Scholar
Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)
MATH
Google Scholar
Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)
MathSciNet
MATH
Google Scholar
Wu, L.: Dufort-Frankel-type methods for linear and nonlinear Schrödinger. SIAM J. Numer. Anal. 33, 1526–1533 (1996)
MathSciNet
MATH
Google Scholar