Skip to main content

Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems

Abstract

We develop dissipative, energy-stable difference methods for linear first-order hyperbolic systems by applying an upwind, discontinuous Galerkin construction of derivative matrices to a space of discontinuous piecewise polynomials on a structured mesh. The space is spanned by translates of a function spanning multiple cells, yielding a class of implicit difference formulas of arbitrary order. We examine the properties of the method, including the scaling of the derivative operator with method order, and demonstrate its accuracy for problems in one and two space dimensions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    The codes used to produce these results will be provided by the first author on request.

References

  1. 1.

    Abarbanel, S., Chertock, A.: Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, I. J. Comput. Phys. 160, 42–66 (2000)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Abarbanel, S., Chertock, A., Yefet, A.: Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, I. J. Comput. Phys. 160, 67–87 (2000)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Abarbanel, S., Gottlieb, D.: A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Abarbanel, S., Gottlieb, D., Carpenter, M.: On the removal of boundary errors caused by Runge–Kutta integration of nonlinear partial differential equations. SIAM J. Sci. Comput. 17, 777–782 (1996)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Abarbanel, S., Hesthaven, D.G.J.: Long time behavior of the perfectly matched layer equations in computational electromagnetics. J. Sci. Comput. 17, 405–422 (2002)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Abarbanel, S., Qasimov, H., Tsynkov, S.: Long-time performance of unsplit PMLs with explicit second order schemes. J. Sci. Comput. 41, 1–12 (2009)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability. SIAM J. Appl. Math. 67, 1–23 (2006)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Banks, J., Hagstrom, T.: On Galerkin difference methods. J. Comput. Phys. 313, 310–327 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Banks, J., Hagstrom, T., Jacangelo, J.: Galerkin differences for acoustic and elastic wave equations in two space dimensions. J. Comput. Phys. 372, 864–892 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Carpenter, M., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236 (1994)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Carpenter, M., Gottlieb, D., Abarbanel, S., Don, W.S.: The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem. SIAM J. Sci. Comput. 16, 1241–1252 (1995)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Chan, J.: Weight-adjusted discontinuous Galerkin methods: matrix-valued weights and elastic wave propagation in heterogeneous media. Int. J. Numer. Methods Eng. 113, 1779–1809 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Chan, J., Hewitt, R., Warburton, T.: Weight-adjusted discontinuous Galerkin methods: curvilinear meshes. SIAM J. Sci. Comput. 39, A2395–A2421 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic problems. Math. Comput. 72, 577–606 (2003)

    Article  Google Scholar 

  15. 15.

    Duru, K., Kozdon, J., Kreiss, G.: Boundary conditions and stability of a perfectly matched layer for the elastic wave equation in first order form. J. Comput. Phys. 303, 372–395 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Duru, K., Kreiss, G.: Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides. Wave Motion 51, 445–465 (2014)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. John Wiley, New York (1995)

    MATH  Google Scholar 

  18. 18.

    Hagstrom, T., Hagstrom, G.: Grid stabilization of high-order one-sided differencing I: first order hyperbolic systems. J. Comput. Phys. 223, 316–340 (2007)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hagstrom, T., Hagstrom, G.: Grid stabilization of high-order one-sided differencing II: second order wave equations. J. Comput. Phys. 231, 7907–7931 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods. No. 54 in Texts in Applied Mathematics. Springer, New York (2008)

    Book  Google Scholar 

  21. 21.

    Kozdon, J., Wilcox, L., Hagstrom, T., Banks, J.: Robust approaches to handling complex geometries with Galerkin difference methods. J. Comput. Phys. 392, 483–510 (2019)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21, 57–79 (2004)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Mirzaee, H., Ryan, J., Kirby, R.: Efficient implementation of smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous Galerkin solutions. J. Sci. Comput. 52, 85–112 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Strand, B.: Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110, 47–67 (1994)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Warburton, T.: A low-storage curvilinear discontinuous Galerkin method for wave problems. SIAM J. Sci. Comput. 35, A1987–A2012 (2013)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1999)

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Hagstrom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by contracts from the U.S. Department of Energy ASCR Applied Math Program and by a U.S. Presidential Early Career Award for Scientists and Engineers. Any opinions, findings, or recommendations expressed here are those of the authors and do not necessarily reflect the views of the Department of Energy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hagstrom, T., Banks, J.W., Buckner, B.B. et al. Discontinuous Galerkin Difference Methods for Symmetric Hyperbolic Systems. J Sci Comput 81, 1509–1526 (2019). https://doi.org/10.1007/s10915-019-01070-6

Download citation

Keywords

  • Difference methods
  • Galerkin methods
  • Hyperbolic systems

Mathematics Subject Classification

  • 65M60
  • 65M06