Skip to main content
Log in

Polynomial Chaos Level Points Method for One-Dimensional Uncertain Steep Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose an alternative approach to the direct polynomial chaos expansion in order to approximate one-dimensional uncertain field exhibiting steep fronts. The principle of our non-intrusive approach is to decompose the level points of the quantity of interest in order to avoid the spurious oscillations encountered in the direct approach. This method is more accurate and less expensive than the direct approach since the regularity of the level points with respect to the input parameters allows achieving the convergence with low-order polynomial series. The additional computational cost induced in the post-processing phase is largely offset by the use of low-level sparse grids that require a weak number of direct model evaluations in comparison with high-level sparse grids. We apply the method to subsurface flows problem with uncertain hydraulic conductivity. Infiltration test cases having different levels of complexity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alexanderian, A., Le Maître, O., Najm, H., Iskandarani, M., Knio, O.: Multiscale stochastic preconditioners in non-intrusive spectral projection. SIAM J. Sci. Comput. 50(2), 306–340 (2012). https://doi.org/10.1007/s10915-011-9486-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexanderian, A., Rizzi, F., Rathinam, M., Le Maître, O., Knio, O.: Preconditioned Bayesian regression for stochastic chemical kinetics. J. Sci. Comput. 58(3), 592–626 (2014). https://doi.org/10.1007/s10915-013-9745-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State University Hydrology Papers. Colorado State University (1964)

  4. Chantrasmi, T., Doostan, A., Iaccarino, G.: Padé–Legendre approximants for uncertainty analysis with discontinuous response surfaces. J. Comput. Phys. 228(19), 7159–7180 (2009). https://doi.org/10.1016/j.jcp.2009.06.024

    Article  MathSciNet  MATH  Google Scholar 

  5. Conrad, P.R., Marzouk, Y.M.: Adaptive Smolyak pseudospectral approximations. SIAM J. Sci. Comput. 35(6), A2643–A2670 (2013). https://doi.org/10.1137/120890715

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantine, P.G., Eldred, M.S., Phipps, E.T.: Sparse pseudospectral approximation method. Comput. Methods Appl. Mech. Eng. 229, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ghanem, R.G., Spanos, S.D.: Stochastic Finite Elements: A Spectral Approach. Springer, Berlin (1991)

    Book  Google Scholar 

  8. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae scientiarum Fennicae: Mathematica - Physica. Universitat Helsinki (1947). https://books.google.com/books?id=bGUUAQAAIAAJ. Accessed 18 Oct 2019

  9. Le Maître, O., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Scientific Computation. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Le Maître, O., Mathelin, L., Knio, O.M., Hussaini, M.Y.: Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete Contin. Dyn. Syst. 28(1), 199–226 (2010). https://doi.org/10.3934/dcds.2010.28.199

    Article  MathSciNet  MATH  Google Scholar 

  11. Le Maître, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004). 10.1016/j.jcp.2003.12.020

    Article  MathSciNet  Google Scholar 

  12. Le Maître, O., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow: II. Random process. J. Comput. Phys 181(1), 9–44 (2002). https://doi.org/10.1006/jcph.2002.7104

    Article  MathSciNet  MATH  Google Scholar 

  13. Poëtte, G., Lucor, D.: Non intrusive iterative stochastic spectral representation with application to compressible gas dynamics. J. Comput. Phys. 231(9), 3587–3609 (2012). https://doi.org/10.1016/j.jcp.2011.12.038

    Article  MathSciNet  MATH  Google Scholar 

  14. Quarteroni, A.M., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics. Springer, New York (2006)

    MATH  Google Scholar 

  15. Reagan, M.T., Najm, H.M., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection. Combust. Flame 132(3), 545–555 (2003). https://doi.org/10.1016/S0010-2180(02)00503-5

    Article  Google Scholar 

  16. Richards, L.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)

    Article  Google Scholar 

  17. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4(240–243), 123 (1963)

    MATH  Google Scholar 

  18. Sochala, P., Le Maître, O.: Polynomial chaos expansion for subsurface flows with uncertain soil parameters. Adv. Water. Resour. 62, 139–154 (2013). https://doi.org/10.1016/j.advwatres.2013.10.003

    Article  Google Scholar 

  19. Tryoen, J., Le Maître, O., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34(5), A2459–A2481 (2012). https://doi.org/10.1137/120863927

    Article  MathSciNet  MATH  Google Scholar 

  20. Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010). https://doi.org/10.1016/j.jcp.2010.05.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Wan, X., Karniadakis, G.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)

    Article  MathSciNet  Google Scholar 

  22. Winokur, J., Kim, D., Bisetti, F., Le Maître, O., Knio, O.M.: Sparse pseudo spectral projection methods with directional adaptation for uncertainty quantification. J. Sci. Comput. 68(2), 596–623 (2016). https://doi.org/10.1007/s10915-015-0153-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiu, D., Karniadakis, G.: Supersensitivity due to uncertain boundary conditions. Int. J. Numer. Methods Eng. 61(12), 2114–2138 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sochala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Pierre Sochala was supported by internal fundings of BRGM (French Geological Survey).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sochala, P., Le Maître, O. Polynomial Chaos Level Points Method for One-Dimensional Uncertain Steep Problems. J Sci Comput 81, 1987–2009 (2019). https://doi.org/10.1007/s10915-019-01069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01069-z

Keywords

Mathematics Subject Classification

Navigation